114 resultados para Periodic Lotka-Volterra System Predator-Prey
em Reposit
Resumo:
Pós-graduação em Biometria - IBB
Resumo:
Pós-graduação em Matematica Aplicada e Computacional - FCT
Resumo:
Our purpose is to show the effects in the predator-prey trajectories due to parameter temporal perturbations and/or inclusion of capacitive terms in the Lotka Volterra Model. An introduction to the Lotka Volterra Model (chapter 2) required a brief review of nonlinear differential equations and stability analysis (chapter 1) , for a better understanding of our work. In the following chapters we display in sequence our results and discussion for the randomic pertubation case (chapter 3); periodic perturbation (chapter 4) and inclusion of capacitive terms (chapter 5). Finally (chapter 6) we synthesize our result
Resumo:
We construct exact solutions for a system of two coupled nonlinear partial differential equations describing the spatio-temporal dynamics of a predator-prey system where the prey per capita growth rate is subject to the Allee effect. Using the G'/G expansion method, we derive exact solutions to this model for two different wave speeds. For each wave velocity we report three different forms of solutions. We also discuss the biological relevance of the solutions obtained. © 2012 Elsevier B.V.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The aim of this paper is to apply methods from optimal control theory, and from the theory of dynamic systems to the mathematical modeling of biological pest control. The linear feedback control problem for nonlinear systems has been formulated in order to obtain the optimal pest control strategy only through the introduction of natural enemies. Asymptotic stability of the closed-loop nonlinear Kolmogorov system is guaranteed by means of a Lyapunov function which can clearly be seen to be the solution of the Hamilton-Jacobi-Bellman equation, thus guaranteeing both stability and optimality. Numerical simulations for three possible scenarios of biological pest control based on the Lotka-Volterra models are provided to show the effectiveness of this method. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The rat exposure test (RET) is a prey (mouse)-predator (rat) situation that activates brain defensive areas and elicits hormonal and defensive behavior in the mouse. Here, we investigated possible correlations between the spatiotemporal [time spent in protected (home chamber and tunnel) and unprotected (surface) compartments and frequency of entries into the three compartments] and ethological [e.g., duration of protected and unprotected stretched-attend postures (SAP), duration of contact with the rat's compartment] measures (Experiment 1). Secondly, we investigated the effects of systemic treatment with pro- or anti-aversive drugs on the behavior that emerged from the factor analysis (Experiment 2). The effects of chronic (21 days) imipramine and fluoxetine on defensive behavior were also investigated (Experiment 3). Exp. 1 revealed that the time in the protected compartment, protected SAP and rat contacts loaded on factor 1 (defensive behavior), while the total entries and unprotected SAP loaded on factor 2 (locomotor activity). Exp. 2 showed that alprazolam (but not diazepam) selectively changed the defensive factor. Caffeine produced a mild proaversive-like effect, whereas yohimbine only decreased locomotor activity (total entries). Fluoxetine (but not imipramine) produced a weak proaversive-like effect. 5-HT1A/5-HT2 receptor ligands did not change any behavioral measure. In Exp. 3, chronic fluoxetine (but not imipramine) attenuated the defensive behavior factor without changing locomotion. Given that the defensive factor was sensitive to drugs known to attenuate (alprazolam and chronic fluoxetine) and induce (caffeine) panic attack, we suggest the RET as a useful test to assess the effects of panicolytic and panicogenic drugs. © 2012 Elsevier B.V.
Resumo:
It is believed that habitat heterogeneity can change the extent of predator-prey interactions. Therefore, in this study we examined the effect of habitat heterogeneity (characterized here as an addition of refuge) on D. ater predation on M. domestica. Predation of D. ater on M. domestica larvae was carried out in experimental habitats with and without refuge, and examined at different prey densities. The number of prey eaten by beetles over 24 h of predator-prey interaction was recorded, and we investigated the strength of interaction between prey and predator in both experimental habitats by determining predator functional response. The mean number of prey eaten by beetles in the presence of refuge was significantly higher than in the absence of refuge. Females had greater weight gains than males. Logistic regression analyses revealed the type II functional response for both experimental habitats, even though data did not fit well into the random predator model. Results suggest that the addition of refuge in fact enhanced predation, as prey consumption increased in the presence of refuge. Predators kept in the presence of refuge also consumed more prey at high prey densities. Thus, we concluded that the addition of refuge was an important component mediating D. ater-M. domestica population interactions. Refuge actually acted as a refuge for predators from prey, since prey behaviors detrimental to predators were reduced in this case.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Optimal foraging theory assumes that predators use different prey types to maximize their rate of energetic gain. Studies focusing on prey preference are important sources of information to understand the foraging dynamics of Chrysomya albiceps. The purpose of this investigation is to determine the influence of larval starvation in C. albiceps on the predation rate of different prey blowfly species and instars under laboratory conditions. Our results suggest that C. albiceps prefers Cochliomyia macellaria larvae to Chrysomya megacephala under non-starvation and starvation conditions. Nevertheless, predators gained more weight consuming C. macellaria. This result suggests that C. albiceps profit more in consuming C. macellaria rather than C. megacephala. The foraging behaviour displayed by C. abiceps on their prey and the consequences for the blowfly community are also discussed.
Resumo:
The pintado (Pseudoplatystoma coruscans) is a ferocious carnivorous catfish with evident cannibalistic behaviour; its nocturnal habits are related to its ability to use predominately chemical sensorial modalities. This study investigated whether the pintado distinguishes conspecifics of different body sizes using chemical cues, which may reflect different physiological conditions such as hunger or stress. Pintados were observed when receiving water conditioned by either larger or similar-size conspecifics. A control group consisted of pintados receiving unconditioned water. Twelve repetitions were used for each condition. Feeding-like behaviours were investigated in the receiver fish and showed that they responded only to the conditioned water. Furthermore, a higher frequency of responses occurred when the water was conditioned by a similar-size conspecific. Thus, it is concluded that pintados are able to recognize conspecific size by chemical cues related to size and that this ability contributes to the individual's decision making on whether to approach or to avoid the conspecific.
Resumo:
The vertebrate predators of post-metamorphic anurans were quantified and the predator-prey relationship was investigated by analysing the relative size of invertebrate predators and anurans. More than 100 vertebrate predators were identified (in more than 200 reports) and classified as opportunistic, convenience, temporary specialized and specialized predators. Invertebrate predators were classified as solitary non-venomous, venomous and social foragers according to 333 reviewed reports. Each of these categories of invertebrate predators was compared with the relative size of the anurans, showing an increase in the relative size of the prey when predators used special predatory tactics. The number of species and the number of families of anurans that were preyed upon did not vary with the size of the predator, suggesting that prey selection was not arbitrary and that energetic constraints must be involved in this choice. The relatively low predation pressure upon brachycephalids was related to the presence of some defensive strategies of its species. This compounding review can be used as the foundation for future advances in vertebrate predator-prey interactions.