7 resultados para Pencil Beam Convolution Algorithm
em Reposit
Resumo:
In the recent years, the use of proton beams in radiotherapy has been an outstanding progress (SMITH, 2006). Up to now, computed tomography (CT) is a prerequisite for treatment planning in this kind of therapy because it provides the electron density distribution required for calculation of dose and the interval of doses. However, the use of CT images for proton treatment planning ignores fundamental differences in physical interaction processes between photons and protons and is, therefore, potentially inaccurate (SADROZINSKI, 2004). Proton CT (pCT) can in principle directly measure the density distribution needed in a patient for the dose distribution (SCHULTE, et al, 2004). One important problem that should be solved is the implementation of image reconstruction algorithms. In this sense, it is necessary to know how the presence of materials with different density and composition interfere in the energy deposition by ionization and coulomb excitation, during its trajectory. The study was conducted in two stages, was used in both the program SRIM (The Stopping and Range of Ions in Matter) to perform simulations of the interaction of proton beams with pencil beam type. In the first step we used the energies in the range of 100-250 MeV (ZIEGLER, 1999). The targets were set to 50 mm in length for the beam of 100 MeV, due to its interaction with the target, and short-range, and 70 mm for 150, 200 and 250 MeV The target was composed of liquid water and a layer of 6 mm cortical bone (ICRP). It were made 9 simulations varying the position of the heterogeneity of 5 mm. In the second step the energy of 250 MeV was taken out from the simulations, due to its greater energy and less interaction. The targets were diminished to 50 mm thick to standardize the simulations. The layer of bone was divided into two equal parts and both were put in the ends of the target... (Complete abstract click electronic access below)
Resumo:
The contribution of the total dose due to deposition of secondary energy particles caused by nuclear inelastic processes (n, 2H, 3H, 3He and ) in proton therapy is an opened problem and in discussion. In the calculations of plans implemented for routine treatment, the paid dose is calculated whereas that the proton loses energy by ionization and or coulomb excitement. The contribution of inelastic processes associated with nuclear reactions is not considered, mainly due to the difficulty of processing targets consisting of various materials. In this sense, there are only estimates for pure materials or simple composition (water, for example).This work presents the results of simulations by the Monte Carlo method employing the code MCNPX v2.50 (Monte Carlo N-Particle eXtended) of the contribution to the total dose of secondary particles. The study was implemented in a cylindrical phantom composed by compact bone, for monochromatic beams of protons between 100 and 200 MeV with pencil beam form
Resumo:
Assigning cells to switches in a cellular mobile network is known as an NP-hard optimization problem. This means that the alternative for the solution of this type of problem is the use of heuristic methods, because they allow the discovery of a good solution in a very satisfactory computational time. This paper proposes a Beam Search method to solve the problem of assignment cell in cellular mobile networks. Some modifications in this algorithm are also presented, which allows its parallel application. Computational results obtained from several tests confirm the effectiveness of this approach and provide good solutions for large scale problems.
Resumo:
The problem of assigning cells to switches in a cellular mobile network is an NP-hard optimization problem. So, real size mobile networks could not be solved by using exact methods. The alternative is the use of the heuristic methods, because they allow us to find a good quality solution in a quite satisfactory computational time. This paper proposes a Beam Search method to solve the problem of assignment cell in cellular mobile networks. Some modifications in this algorithm are also presented, which allows its parallel application. Computational results obtained from several tests confirm the effectiveness of this approach to provide good solutions for medium- and large-sized cellular mobile network.
Resumo:
In the universities, before the start of each school year, is held the distribution of classes among available teachers. Therefore, it is necessary to consider the maximum workweek for each teacher and their preferences for each discipline, to prevent a teacher to give lessons in two separate locations at the same time and to avoid some teachers to become overloaded while others with large clearance. This process, manually performed, is time consuming and does not allow the visualization of other combinations of assignment of teachers to classes, besides being liable to error. This work aims to develop a decision support tool for the problem of assigning teachers to classes in college. The project encompasses the development of a computer program using the concepts of object orientation and a tree search algorithm of a combinatorial nature called Beam Search. The programming language used is Java and the program has a graphical interface for entering and manipulating data of the problem. Once obtained the schedule data of classes and teachers is possible, by means of the tool, perform various simulations and manual adjustments to achieve the final result. It is an efficient method of class scheduling, considering the speed of task execution and the fact that it generates only feasible results
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)