58 resultados para Online services using open-source NLP tools
em Reposit
Resumo:
Summary: The objective of this work was to evaluate the sperm motility of 13 Steindachneridion parahybae males using open-source software (ImageJ/CASA plugin). The sperm activation procedure and image capture were initiated after semen collection. Four experimental phases were defined from the videos captured of each male as follows: (i) standardization of a dialogue box generated by the CASA plugin within ImageJ; (ii) frame numbers used to perform the analysis; (iii) post-activation motility between 10 and 20 s with analysis at each 1 s; and (iv) post-activation motility between 10 and 50 s with analysis at each 10 s. The settings used in the CASA dialogue box were satisfactory, and the results were consistent. These analyses should be performed using 50 frames immediately after sperm activation because spermatozoa quickly lose their vigor. At 10 s post-activation, 89.1% motile sperm was observed with 107.2 μm s-1 curvilinear velocity, 83.6 μm s-1 average path velocity, 77.1 μm s-1 straight line velocity; 91.6% were of straightness and 77.1% of wobble. The CASA plugin within ImageJ can be applied in sperm analysis of the study species by using the established settings. © 2013 Blackwell Verlag GmbH.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The Finite Element Method (FEM) is a way of numerical solution applied in different areas, as simulations used in studies to improve cardiac ablation procedures. For this purpose, the meshes should have the same size and histological features of the focused structures. Some methods and tools used to generate tetrahedral meshes are limited mainly by the use conditions. In this paper, the integration of Open Source Softwares is presented as an alternative to solid modeling and automatic mesh generation. To demonstrate its efficiency, the cardiac structures were considered as a first application context: atriums, ventricles, valves, arteries and pericardium. The proposed method is feasible to obtain refined meshes in an acceptable time and with the required quality for simulations using FEM.
Resumo:
The technologies are rapidly developing, but some of them present in the computers, as for instance their processing capacity, are reaching their physical limits. It is up to quantum computation offer solutions to these limitations and issues that may arise. In the field of information security, encryption is of paramount importance, being then the development of quantum methods instead of the classics, given the computational power offered by quantum computing. In the quantum world, the physical states are interrelated, thus occurring phenomenon called entanglement. This study presents both a theoretical essay on the merits of quantum mechanics, computing, information, cryptography and quantum entropy, and some simulations, implementing in C language the effects of entropy of entanglement of photons in a data transmission, using Von Neumann entropy and Tsallis entropy.
Resumo:
Pós-graduação em Ciência da Computação - IBILCE
Resumo:
IEEE 1451 Standard is intended to address the smart transducer interfacing problematic in network environments. Usually, proprietary hardware and software is a very efficient solution to in planent the IEEE 1451 normative, although can be expensive and inflexible. In contrast, the use of open and standardized tools for implementing the IEEE 1451 normative is proposed in this paper. Tools such as Java and Phyton programming languages, Linux, programmable logic technology, Personal Computer resources and Ethernet architecture were integrated in order to constructa network node based on the IEEE 1451 standards. The node can be applied in systems based on the client-server communication model The evaluation of the employed tools and expermental results are presented. © 2005 IEEE.
Resumo:
There has been a great interest for improving the machining of cast iron materials in the automotive and other industries. Comparative studies for tool used to machine grey cast iron (CI) and compacted graphite iron (CGI) on dry machining were also performed in order to find out why in this case the tool lifetime is not significantly higher. However the machining these materials while considering turning with the traditional high-speed steel and carbide cutting tools present any disadvantages. One of these disadvantages is that all the traditional machining processes involve the cooling fluid to remove the heat generated on workpiece due to friction during cutting. This paper present a new generation of ceramic cutting tool exhibiting improved properties and important advances in machining CI and CGI. The tool performance was analyzed in function of flank wear, temperature and roughness, while can be observed that main effects were found for tool wear, were abrasion to CI and inter-diffusion of constituting elements between tool and CGI, causing crater. However the difference in tool lifetime can be explained by the formation of a MnS layer on the tool surface in the case of grey CI. This layer is missing in the case of CGI.
Resumo:
During gray cast iron cutting, the great rate of mechanical energy from cutting forces is converted into heat. Considerable heat is generated, principally in three areas: the shear zone, rake face and at the clearance side of the cutting edge. Excessive heat will cause undesirable high temperature in the tool which leads to softening of the tool and its accelerated wear and breakage. Nowadays the advanced ceramics are widely used in cutting tools. In this paper a composition special of Si3N4 was sintering, characterized, cut and ground to make SNGN120408 and applyed in machining gray cast iron with hardness equal 205 HB in dry cutting conditions by using digital controlled computer lathe. The tool performance was analysed in function of cutting forces, flank wear, temperature and roughness. Therefore metal removing process is carried out for three different cutting speeds (300 m/min, 600 m/min, and 800 m/min), while a cutting depth of 1 mm and a feed rate of 0.33 mm/rev are kept constant. As a result of the experiments, the lowest main cutting force, which depends on cutting speed, is obtained as 264 N at 600 m/min while the highest main cutting force is recorded as 294 N at 300 m/min.
Resumo:
Service oriented architectures (SOA) based on Simple Object Access Protocol (SOAP) Web services have attracted the attention of enterprises mainly for business-to-business integration and to create composite applications that execute business processes. An existing problem is the lack of preoccupation with non technical users due to the fact that to create a composite application to fulfill users needs, it is necessary to be in contact with IT staff. To overcome this issue, enterprises can take advantage of web 2.0, 'introducing in the development stage some technologies like mashups and some concepts like user empowerment, collaborative work and collective intelligence. Some results [3] [13] have shown how web 2.0 concepts can help non technical users to produce relative complex business processes. However, traditional enterprise requirements goes beyond typical web 2.0 solutions in several aspects: (1) traditional enterprise systems are based on heterogeneous stack of technologies that are not directly exploitable from a web-based client (where SOAP web services play an important role); (2) web browsers set some cross-domain security constraints making difficult to integrate services from diverse domains. In this paper, a contribution to two web 2.0 research projects [14] [15] partially solves the problems described: provide a way to invoke cross-domain backend services (based on SOAP technologies) directly only using clientside languages, without a need for any adaptation layer. © 2010 ACM.
Resumo:
The applications of the Finite Element Method (FEM) for three-dimensional domains are already well documented in the framework of Computational Electromagnetics. However, despite the power and reliability of this technique for solving partial differential equations, there are only a few examples of open source codes available and dedicated to the solid modeling and automatic constrained tetrahedralization, which are the most time consuming steps in a typical three-dimensional FEM simulation. Besides, these open source codes are usually developed separately by distinct software teams, and even under conflicting specifications. In this paper, we describe an experiment of open source code integration for solid modeling and automatic mesh generation. The integration strategy and techniques are discussed, and examples and performance results are given, specially for complicated and irregular volumes which are not simply connected. © 2011 IEEE.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)