13 resultados para Multi-pulse rectifiers

em Reposit


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Multipulse rectifiers can replace a conventional six pulse three-phase rectifier (diode bridge) providing a DC voltage with low ripple, low Total Harmonic Distortion of current (THDi) and a high Power Factor (PF). In this context is presented a multipulse rectifier with generalized Delta-differential autotransformer topology, which can provide any level of DC output voltage for any level of three-phase AC input voltage. This paper presents all the possible configurations for Delta topology in order to choose, through graphics, one configuration that presents reduced weight and volume. The average voltage on the DC bus must be compatible with the DC voltage in the six pulse rectifier used in commercial ASDs. Therefore, it is possible to apply the retrofit technique to replace the conventional bridge rectifier by the proposed multipulse rectifier. Based on mathematic models and simulation results, an 18-pulse rectifier with Delta topology, 220 V of line voltage, 315 V of DC output, and rating 2.5 kW of power was designed, implemented and applied for three different commercial ASDs. Experimental results as voltage and current waveforms and results about PF and THDi will be presented. © 2012 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper describes the design and development of a high input power-factor (HPF) AC to AC converter for naval applications using Permanent Magnet Generator (PMG). The proposed converter comprises an isolated three-phase uncontrolled multipulse rectification stage directly connected to a single-phase inverter stage, without the use of DC to DC intermediary stage, resulting in more simplicity for the overall circuitry, assuring robustness, reliability and reduced costs. Furthermore, the multipulse rectifier stage is capable to provide high power factor and input currents with low total harmonic distortion (THD). The output voltage of the PMG varies from 260V rms (220 Hz) to 380V rms (360 Hz), depending on load conditions. The output single-phase inverter stage was designed to operate with wide range of DC bus voltage, maintaining 120V rms, 60 Hz output. Measured total harmonic distortion for the AC output voltage represents less than 2%, at 3.6kW nominal linear load. © 2010 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Multipulse rectifier topologies based on autoconnections, or differential connections, are more and more applied as interface stages between the mains and power converters. These topologies mitigate many low-order current harmonics in the utility, reducing the THD (total harmonic distortion) and increasing the power factor. This paper presents a mathematical model based on phasor diagrams, that results in a single expression able to unify all differential topologies connections (Delta and Wye), for both step-up or step-down autotransformers, for 12 and 18-pulse AC-DC converters. The proposed family of converters can be designed for any relationship between the input voltage and the load voltage. An immediate application would be the retrofit, i.e. to replace a conventional rectifier with poor quality of the processed energy by the 12 or 18 pulses rectifier with Wye or Delta-differential connection. The design procedure, simple and fast, is developed and tested for a prototype rating 6 kW and 250 V on the DC load © 2010 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper proposes and describes a high power factor AC-AC converter for naval applications using Permanent Magnet Generator (PMG). The three-phase output voltages of the PMG vary from 260 Vrms (220 Hz) to 380 Vrms (360 Hz), depending on load conditions. The proposed converter consists of a Y-/ΔY power transformer, which provides electrical isolation between the PMG and remaining stages, and a twelve-pulse uncontrolled rectifier stage directly connected to a single-phase inverter stage, without the use of an intermediary DC-DC topology. This proposal results in more simplicity for the overall circuitry, assuring robustness, reliability and reduced costs. Furthermore, the multipulse rectifier stage is capable to provide high power factor and low total harmonic distortion for the input currents of the converter. The single-phase inverter stage was designed to operate with wide range of DC bus voltage, maintaining 120 Vrms, 60 Hz output. The control philosophy, implemented in a digital signal processor (DSP) which also contains protection routines, alows series connections between two identical converters, achieving 240 Vrms, 60 Hz total output voltage. Measured total harmonic distortion for the AC output voltage is lower than 2% and the input power factor is 0.93 at 3.6kW nominal load. © 2010 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work proposes a new three-phase multipulse rectifier based on the delta autotransformer connection with DC-DC Boost stages and constant hysteresis control which has the objective of providing a reliable DC bus for on-board applications, electric motor drives and similars, always considering power quality issues. Thus, the proposal presents 0.99 power factor, 6% harmonic distortions in the currents from the mains and enhanced magnetic core utilization, which results in low weight and volume for the overall converter. The proposed control technique uses the simple constant hysteresis concept, thus leading to a low-cost but effective and reliable strategy. © 2011 IEEE.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This work proposes a methodology to generalize the Y-connections for 12- and 18-pulse autotransformers. A single mathematical expression, obtained through simple trigonometric operations, represents all the connections. The proposed methodology allows choosing any ratio between the input and the output voltages. The converters can operate either as step-up or as step-down voltage. To simplify the design of the windings, graphics are generated to calculate the turn-ratio and the polarity of each secondary winding, with respect to the primary winding. A design example, followed by digital simulations, illustrates the presented steps. Experimental results of two prototypes (12 and 18 pulses) are presented. The results also show that high power factor is an inherent characteristic of multi-pulse converters, without any active or passive power factor pre-regulators needs. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This work proposes a methodology to generalize the A-connections for 12 and 18-pulse autotransformers. A single mathematical expression, obtained through simple trigonometric operations, represents all the connections. The proposed methodology allows choosing any ratio between the input and the output voltages. The converters can operate either as step-up or as step-down voltage. To simplify the design of the windings, graphics are generated to calculate the turn-ratio and the polarity of each secondary winding, with respect to the primary winding. A design example, followed by digital simulations, and experimental results illustrate the presented steps. The results also show that high power factor is an inherent characteristic of multi-pulse converters, without any active or passive power factor pre-regulators needs.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper presents an improved analysis of a novel Programmable Power-factor-corrected-Based Hybrid Multipulse Power Rectifier (PFC-HMPR) for utility interface of power electronic converters. The proposed hybrid multipulse rectifier is composed of an ordinary three-phase six-pulse diode-bridge rectifier (Graetz bridge) with a parallel connection of single-phase switched converters in each three-phase rectifier leg. In this paper, the authors present a complete discussion about the controlled rectifiers' power contribution and also a complete analysis concerning the total harmonic distortion of current that can be achieved when the proposed converter operates as a conventional 12-pulse rectifier. The mathematical analysis presented in this paper corroborate, with detailed equations, the experimental results of two 6-kW prototypes implemented in a laboratory.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This work presents a study regarding the optimization of multipulse converters. A general expression for the connection (Δ or Y) for both 12 and 18-pulses is obtained and describes the output voltages on the secondary windings, depending on the voltage reference from the primary. These generalized expressions allows choosing different ratios between input and output voltages and as result an optimum operation point for the converter can be calculated. Considering Δ-connected converters the optimum point occurs when the magnetic core of the autotransformer processes 18% and 17% of the output power for 12 and 18-pulses, respectively. For Y-connected converters the optimum point occurs when the kVA rating is 13% and 18% for 12 and 18-pulses, respectively. Based on these results magnetic elements can be calculated and designed leading to a great weight and volume reduction and also to lower costs and losses. Finally an analysis is made to improve the kVA rating of the transformers for 12 and 18 pulses converters. © 2009 IEEE.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Multipulse rectifier topologies based on auto-connections or differential connections, are more and more applied as interface stages between the mains and power converters. These topologies are becoming increasingly attractive not only for robustness, but to mitigate many low order current harmonics in the utility, reducing the total harmonic distortion of the line currents (THDi) and increasing the power factor requirements. Unlike isolated connections (delta-wye, zigzag, etc.), when the differential transformer is employed, most of the energy required by the load is directly conducted through the windings. Thus, only a small fraction of the kVA is processed by the magnetic core. This feature increases the power density of the converter. This paper presents a mathematical model based on phasor diagrams, which results in a single expression able to merge all differential connections (wye and delta), for both step-up and step-down rectifiers for 12 or 18 pulses. The proposed family of converters can be designed for any relationship between the line input voltage and the DC voltage, unlike the conventional phase-shift voltage connections. An immediate application would be the retrofit, i.e. to replace a conventional rectifier with poor quality of the processed energy by the 12 or 18-pulse rectifiers with Wye or Delta-differential connections, keeping the original values for the input and load voltages. The simple and fast design procedure is developed and tested for a prototype rating 6 kW and 400 V on DC load.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The purpose of this paper is to present a computer model that enables the operation analysis of a tuned filter as an attenuator device of harmonic generated 12 and 18-pulses converters with Y-generalized differential connection. Are presented in this study physical considerations, mathematical modeling and digital simulations in the frequency domain using the software Orcad-Pspice®, which allows a spectral analysis of the harmonic components and supports the search for an optimal filtering process. It is unequivocally demonstrated the feasibility of the application as an alternative to optimize the use of multipulse converters, and enable the operation of this device within the established regulatory standards. The validation of the proposed model is based on results obtained in the time domain using Matlab/Simulink®. © 2011 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)