73 resultados para Lithium Ion Conductors, Phosphazenes, Model Compounds, Ion Dynamics

em Reposit


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Glass structure and fluorine motion dynamics are investigated in lead-cadmium fluorgermanate glasses by means of differential scanning calorimetry, Raman scattering, x-ray absorption (EXAFS), electrical conductivity (EC), and F-19 nuclear magnetic resonance (NMR) techniques. Glasses with composition 60PbGeO(3)-xPbF(2)-yCdF(2) (in mol %), with x+y=40 and x=10, 20, 30, 40, are studied. Addition of metal fluorides to the base PbGeO3 glass leads to a decrease of the glass transition temperature (T-g) and to an enhancement of the ionic conductivity properties. Raman and EXAFS data analysis suggest that metagermanate chains form the basic structural feature of these glasses. The NMR study leads to the conclusion that the F-F distances are similar to those found in pure crystalline phases. Experimental results suggest the existence of a heterogeneous glass structure at the molecular scale, which can be described by fluorine rich regions permeating the metagermanate chains. The temperature dependence of the NMR line shapes and relaxation times exhibits the qualitative and quantitative features associated with the high fluorine mobility in these systems. (C) 2004 American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Kainoid amino acids are agonists of the AMPA/kainate receptors and exhibit highly potent neuroexcitatory activity. From the results of extensive structure-activity relationship studies, we previously postulated that the C4-substituent of the kainoid amino acids interacts with an allosteric site of the glutamate receptor with electron-donating character. In order to investigate the mode of action in more detail, molecular orbital calculation for model compounds of the kainoid were performed. The results indicated that the HOMO energy level of the C4-substituent is involved in the potent neuroexcitatory activity, thus supporting our hypothesis. (C) 2002 Elsevier B.V. Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hybrid organic-inorganic ionic conductors, also called ormolytes (organically modified electrolytes), were obtained by dissolution of LiClO 4 in siloxane-poly(propylene glycol) matrixes. The dynamic features of these nanocomposites were studied and correlated to their electrical properties. Solid-state nuclear magnetic resonance (NMR) spectroscopy was used to probe the effects of the temperature and nanocomposite composition on the dynamic behaviors of both the ionic species ( 7Li) and the polymer chains ( 13C). NMR, dc ionic conductivity, and DSC results demonstrate that the Li + mobility is strongly assisted by the segmental motion of the polymer chain above its glass transition temperature. The ac ionic conductivity in such composites is explained by use of the random free energy barrier (RFEB) model, which is agreement with their disordered and heterogenous structures. These solid ormolytes are transparent and flexible, and they exhibit good ionic conductivity at room temperature (up to 10 -4 S/cm). Consequently, they are very promising candidates for use in several applications such as batteries, sensors, and electrochromic and photoelectro-chemical devices.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A simple, cheap and versatile, polyol-mediated fabrication method has been extended to the synthesis of tin oxide nanoparticles on a large scale. Ultrafine SnO2 nanoparticles with crystallite sizes of less than 5 nm were realized by refluxing SnCl2 . 2H(2)O in ethylene glycol at 195 degrees C for 4 h under vigorous stirring in air. The as-prepared SnO2 nanoparticles exhibited enhanced Li-ion storage capability and cyclability, demonstrating a specific capacity of 400 mAh g(-1) beyond 100 cycles. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Esta revisão visa ser uma introdução à aplicação de materiais cerâmicos em dispositivos de armazenamento de energia, em especial baterias secundárias de íons lítio, dispositivos nos quais os materiais cerâmicos, especialmente óxidos, são muito importantes em todas as partes do dispositivo. A revisão está focada nos materiais cerâmicos para catodos e anodos, partes chaves destes dispositivos. Ela tem por principal finalidade ser uma fonte de informação para aqueles que desejem trabalhar com o desenvolvimento de materiais cerâmicos para tais tipos de dispositivos. Aspectos relacionados à nanotecnologia e materiais óxidos nanoestruturados para esta área são discutidos ao final do artigo.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Fitzhugh-Nagumo (fn) mathematical model characterizes the action potential of the membrane. The dynamics of the Fitzhugh-Nagumo model have been extensively studied both with a view to their biological implications and as a test bed for numerical methods, which can be applied to more complex models. This paper deals with the dynamics in the (FH) model. Here, the dynamics are analyzed, qualitatively, through the stability diagrams to the action potential of the membrane. Furthermore, we also analyze quantitatively the problem through the evaluation of Floquet multipliers. Finally, the nonlinear periodic problem is controlled, based on the Chebyshev polynomial expansion, the Picard iterative method and on Lyapunov-Floquet transformation (L-F transformation).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pós-graduação em Ciência e Tecnologia de Materiais - FC

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)