39 resultados para Landmark-based spectral clustering
em Reposit
Resumo:
Morphological differences among 6 species of marine fishes belonging to 2 subfamilies of the family Serranidae (Serraninae: Dules auriga, Diplectrum formosum, and D, radiale; Epinephelinae: Epinephelus marginatus, Mycteroperca acutirostris, and M. bonaci) were studied by the geometric morphometric method of thin-plate splines and multivariate analysis of partial-warp scores. The decomposition of shape variation into uniform and nonaffine components of shape change indicate that major differences among species are related to both components of shape variation. Significant differences were found among species with respect to the uniform components, but there is no clear separation of taxonomic groups related to these components, and species are instead separated on the basis of body height and caudal peduncle length. Non-uniform changes in body shape, in turn, clearly differentiate the species of Serraninae and Epinephelinae. These shape changes are probably related to differences in habitat and feeding habits among the species.
Detection and Identification of Abnormalities in Customer Consumptions in Power Distribution Systems
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Toadlets of the genus Brachycephalus are endemic to the Atlantic rainforests of southeastern and southern Brazil. The 14 species currently described have snout-vent lengths less than 18. mm and are thought to have evolved through miniaturization: an evolutionary process leading to an extremely small adult body size. Here, we present the first comprehensive phylogenetic analysis for Brachycephalus, using a multilocus approach based on two nuclear (Rag-1 and Tyr) and three mitochondrial (Cyt b, 12S, and 16S rRNA) gene regions. Phylogenetic relationships were inferred using a partitioned Bayesian analysis of concatenated sequences and the hierarchical Bayesian method (BEST) that estimates species trees based on the multispecies coalescent model. Individual gene trees showed conflict and also varied in resolution. With the exception of the mitochondrial gene tree, no gene tree was completely resolved. The concatenated gene tree was completely resolved and is identical in topology and degree of statistical support to the individual mtDNA gene tree. On the other hand, the BEST species tree showed reduced significant node support relative to the concatenate tree and recovered a basal trichotomy, although some bipartitions were significantly supported at the tips of the species tree. Comparison of the log likelihoods for the concatenated and BEST trees suggests that the method implemented in BEST explains the multilocus data for Brachycephalus better than the Bayesian analysis of concatenated data. Landmark-based geometric morphometrics revealed marked variation in cranial shape between the species of Brachycephalus. In addition, a statistically significant association was demonstrated between variation in cranial shape and genetic distances estimated from the mtDNA and nuclear loci. Notably, B. ephippium and B. garbeana that are predicted to be sister-species in the individual and concatenated gene trees and the BEST species tree share an evolutionary novelty, the hyperossified dorsal plate. © 2011 Elsevier Inc.
Resumo:
Objectives: To investigate the reliability of regional three-dimensional registration and superimposition methods for assessment of temporomandibular joint condylar morphology across subjects and longitudinally.Methods: The sample consisted of cone beam CT scans of 36 patients. The across-subject comparisons included 12 controls, mean age 41.3 +/- 12.0 years, and 12 patients with temporomandibular joint osteoarthritis, mean age 41.3 +/- 14.7 years. The individual longitudinal assessments included 12 patients with temporomandibular joint osteoarthritis, mean age 37.8 +/- 16.7 years, followed up at pre-operative jaw surgery, immediately after and one-year post-operative. Surface models of all condyles were constructed from the cone beam CT scans. Two previously calibrated observers independently performed all registration methods. A landmark-based approach was used for the registration of across-subject condylar models, and temporomandibular joint osteoarthritis vs control group differences were computed with shape analysis. A voxel-based approach was used for registration of longitudinal scans calculated x, y, z degrees of freedom for translation and rotation. Two-way random intraclass correlation coefficients tested the interobserver reliability.Results: Statistically significant differences between the control group and the osteoarthritis group were consistently located on the lateral and medial poles for both observers. The interobserver differences were <= 0.2 mm. For individual longitudinal comparisons, the mean interobserver differences were <= 0.6 mm in translation errors and 1.2 degrees in rotation errors, with excellent reliability (intraclass correlation coefficient >0.75).Conclusions: Condylar registration for across-subjects and longitudinal assessments is reliable and can be used to quantify subtle bony differences in the three-dimensional condylar morphology.
Resumo:
The spectral principle of Connes and Chamseddine is used as a starting point to define a discrete model for Euclidean quantum gravity. Instead of summing over ordinary geometries, we consider the sum over generalized geometries where topology, metric, and dimension can fluctuate. The model describes the geometry of spaces with a countable number n of points, and is related to the Gaussian unitary ensemble of Hermitian matrices. We show that this simple model has two phases. The expectation value
Resumo:
Structural Health Monitoring (SHM) denotes a system with the ability to detect and interpret adverse changes in a structure. One of the critical challenges for practical implementation of SHM system is the ability to detect damage under changing environmental conditions. This paper aims to characterize the temperature, load and damage effects in the sensor measurements obtained with piezoelectric transducer (PZT) patches. Data sets are collected on thin aluminum specimens under different environmental conditions and artificially induced damage states. The fuzzy clustering algorithm is used to organize the sensor measurements into a set of clusters, which can attribute the variation in sensor data due to temperature, load or any induced damage.
Resumo:
Wireless Sensor Networks (WSN) are a special kind of ad-hoc networks that is usually deployed in a monitoring field in order to detect some physical phenomenon. Due to the low dependability of individual nodes, small radio coverage and large areas to be monitored, the organization of nodes in small clusters is generally used. Moreover, a large number of WSN nodes is usually deployed in the monitoring area to increase WSN dependability. Therefore, the best cluster head positioning is a desirable characteristic in a WSN. In this paper, we propose a hybrid clustering algorithm based on community detection in complex networks and traditional K-means clustering technique: the QK-Means algorithm. Simulation results show that QK-Means detect communities and sub-communities thus lost message rate is decreased and WSN coverage is increased. © 2012 IEEE.
Resumo:
One objective of the feeder reconfiguration problem in distribution systems is to minimize the power losses for a specific load. For this problem, mathematical modeling is a nonlinear mixed integer problem that is generally hard to solve. This paper proposes an algorithm based on artificial neural network theory. In this context, clustering techniques to determine the best training set for a single neural network with generalization ability are also presented. The proposed methodology was employed for solving two electrical systems and presented good results. Moreover, the methodology can be employed for large-scale systems in real-time environment.
Resumo:
The development of strategies for structural health monitoring (SHM) has become increasingly important because of the necessity of preventing undesirable damage. This paper describes an approach to this problem using vibration data. It involves a three-stage process: reduction of the time-series data using principle component analysis (PCA), the development of a data-based model using an auto-regressive moving average (ARMA) model using data from an undamaged structure, and the classification of whether or not the structure is damaged using a fuzzy clustering approach. The approach is applied to data from a benchmark structure from Los Alamos National Laboratory, USA. Two fuzzy clustering algorithms are compared: fuzzy c-means (FCM) and Gustafson-Kessel (GK) algorithms. It is shown that while both fuzzy clustering algorithms are effective, the GK algorithm marginally outperforms the FCM algorithm. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
We derive constraints on a simple quintessential inflation model, based on a spontaneously broken Phi(4) theory, imposed by the Wilkinson Microwave Anisotropy Probe three-year data (WMAP3) and by galaxy clustering results from the Sloan Digital Sky Survey (SDSS). We find that the scale of symmetry breaking must be larger than about 3 Planck masses in order for inflation to generate acceptable values of the scalar spectral index and of the tensor-to-scalar ratio. We also show that the resulting quintessence equation of state can evolve rapidly at recent times and hence can potentially be distinguished from a simple cosmological constant in this parameter regime.
Resumo:
The synthesis and thermal behavior of the new [Pd(fum)(bipy)] (n) center dot 2nH(2)O (1), [Pd(fum)(bpe)] (n) center dot nH(2)O (2) and [Pd(fum)(pz)] (n) center dot 3nH(2)O (3) {bipy = 4,4'-bipyridine, bpe = 1,2-bis(4-pyridyl)ethene and pz = pyrazine} fumarate complexes are described in this work as well their characterization by IR and (13)C CPMAS NMR spectroscopies. TG curves showed that the compounds released organic ligands and lattice water molecules in the temperature range of 46-491 A degrees C. In all the cases, metallic palladium was identified as the final residue.
Resumo:
Sessenta e nove acessos de Psidium, coletados em seis estados brasileiros, foram analisados para dois métodos não hierárquicos de agrupamento e por componentes principais (CP), visando orientar programas de melhoramento. Foram analisadas as variáveis ácido ascórbico, β-caroteno, licopeno, fenóis totais, flavonóides totais, atividade antioxidante, acidez titulável, sólidos solúveis, açúcares solúveis totais, teor de umidade, diâmetro lateral e transversal do fruto, peso da polpa e das sementes/fruto, número e produção de frutos/planta. Foram observados agrupamentos específicos para os acessos de araçazeiros no método de Tocher e do k-means e na dispersão tridimensional dos quatro CPs. Os acessos de araçazeiros foram separados dos de goiabeira. Não foi observado nenhum agrupamento específico por estado de coleta, indicando a inexistência de barreiras na propagação dos acessos de goiabeira. As análises sugerem a prospecção de maior número de amostras de germoplasma num menor número de regiões, bem como acessos divergentes com alto teor de compostos nutricionais.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The J(1)...J(3) is a recent optical method for linear readout of dynamic phase modulation index in homodyne interferometers. In this work, the J(1)... J(3) method is applied to measure voltage in an optical voltage sensor. Based on the classical J(1)...J(4) method, the J(1)... J(3) technique shows to be more stable to phase drift and simpler for implementation than the original one. The sensor dynamic range is enhanced. The agreement between theoretical and experimental results, based on 1/f noise, is demonstrated.
Resumo:
In this paper, the influence on optical properties of alkali halides such as CsCl in a covalent glassy matrix has been investigated. Chalcogenide glasses belonging to the (GeS2)-(Ga2S3)-CsCI system with high ratio of CsCl present an entire transparency in the visible range. These glasses maintain good transmission up to 12 mu m. Furthermore, the thermo-mechanical properties and the glass hygroscopicity have been investigated as function of the CsCl amount. This new generation of glasses presents a great interest for optical application. They could be used both for passive applications (multi-spectral imaging) and active applications for rare-earth doping due to their good transmission in the visible range, increasing optical pumping possibilities.