107 resultados para Heuristic programming
em Reposit
Resumo:
In the spatial electric load forecasting, the future land use determination is one of the most important tasks, and one of the most difficult, because of the stochastic nature of the city growth. This paper proposes a fast and efficient algorithm to find out the future land use for the vacant land in the utility service area, using ideas from knowledge extraction and evolutionary algorithms. The methodology was implemented into a full simulation software for spatial electric load forecasting, showing a high rate of success when the results are compared to information gathered from specialists. The importance of this methodology lies in the reduced set of data needed to perform the task and the simplicity for implementation, which is a great plus for most of the electric utilities without specialized tools for this planning activity. © 2008 IEEE.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Biometria - IBB
Resumo:
Pós-graduação em Engenharia Elétrica - FEIS
Resumo:
This article presents a well-known interior point method (IPM) used to solve problems of linear programming that appear as sub-problems in the solution of the long-term transmission network expansion planning problem. The linear programming problem appears when the transportation model is used, and when there is the intention to solve the planning problem using a constructive heuristic algorithm (CHA), ora branch-and-bound algorithm. This paper shows the application of the IPM in a CHA. A good performance of the IPM was obtained, and then it can be used as tool inside algorithm, used to solve the planning problem. Illustrative tests are shown, using electrical systems known in the specialized literature. (C) 2005 Elsevier B.V. All rights reserved.
Resumo:
A constructive heuristic algorithm (CHA) to solve distribution system planning (DSP) problem is presented. The DSP is a very complex mixed binary nonlinear programming problem. A CHA is aimed at obtaining an excellent quality solution for the DSP problem. However, a local improvement phase and a branching technique were implemented in the CHA to improve its solution. In each step of the CHA, a sensitivity index is used to add a circuit or a substation to the distribution system. This sensitivity index is obtained by solving the DSP problem considering the numbers of circuits and substations to be added as continuous variables (relaxed problem). The relaxed problem is a large and complex nonlinear programming and was solved through an efficient nonlinear optimization solver. Results of two tests systems and one real distribution system are presented in this paper in order to show the ability of the proposed algorithm.
Resumo:
An efficient heuristic algorithm is presented in this work in order to solve the optimal capacitor placement problem in radial distribution systems. The proposal uses the solution from the mathematical model after relaxing the integrality of the discrete variables as a strategy to identify the most attractive bus to add capacitors to each step of the heuristic algorithm. The relaxed mathematical model is a nonlinear programming problem and is solved using a specialized interior point method, The algorithm still incorporates an additional strategy of local search that enables the finding of a group of quality solutions after small alterations in the optimization strategy. Proposed solution methodology has been implemented and tested in known electric systems getting a satisfactory outcome compared with metaheuristic methods.The tests carried out in electric systems known in specialized literature reveal the satisfactory outcome of the proposed algorithm compared with metaheuristic methods. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
An approach for solving reactive power planning problems is presented, which is based on binary search techniques and the use of a special heuristic to obtain a discrete solution. Two versions were developed, one to run on conventional (sequential) computers and the other to run on a distributed memory (hypercube) machine. This latter parallel processing version employs an asynchronous programming model. Once the set of candidate buses has been defined, the program gives the location and size of the reactive sources needed(if any) in keeping with operating and security constraints.
Resumo:
The paper presents a constructive heuristic algorithm (CHA) for solving directly the long-term transmission-network-expansion-planning (LTTNEP) problem using the DC model. The LTTNEP is a very complex mixed-integer nonlinear-programming problem and presents a combinatorial growth in the search space. The CHA is used to find a solution for the LTTNEP problem of good quality. A sensitivity index is used in each step of the CHA to add circuits to the system. This sensitivity index is obtained by solving the relaxed problem of LTTNEP, i.e. considering the number of circuits to be added as a continuous variable. The relaxed problem is a large and complex nonlinear-programming problem and was solved through the interior-point method (IPM). Tests were performed using Garver's system, the modified IEEE 24-Bus system and the Southern Brazilian reduced system. The results presented show the good performance of IPM inside the CHA.
Resumo:
A Lagrangian based heuristic is proposed for many-to-many assignment problems taking into account capacity limits for task and agents. A modified Lagrangian bound studied earlier by the authors is presented and a greedy heuristic is then applied to get a feasible Lagrangian-based solution. The latter is also used to speed up the subgradient scheme to solve the modified Lagrangian dual problem. A numerical study is presented to demonstrate the efficiency of the proposed approach. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
In this paper a method for solving the Short Term Transmission Network Expansion Planning (STTNEP) problem is presented. The STTNEP is a very complex mixed integer nonlinear programming problem that presents a combinatorial explosion in the search space. In this work we present a constructive heuristic algorithm to find a solution of the STTNEP of excellent quality. In each step of the algorithm a sensitivity index is used to add a circuit (transmission line or transformer) to the system. This sensitivity index is obtained solving the STTNEP problem considering as a continuous variable the number of circuits to be added (relaxed problem). The relaxed problem is a large and complex nonlinear programming and was solved through an interior points method that uses a combination of the multiple predictor corrector and multiple centrality corrections methods, both belonging to the family of higher order interior points method (HOIPM). Tests were carried out using a modified Carver system and the results presented show the good performance of both the constructive heuristic algorithm to solve the STTNEP problem and the HOIPM used in each step.
Resumo:
In this paper, a method for solving the short term transmission network expansion planning problem is presented. This is a very complex mixed integer nonlinear programming problem that presents a combinatorial explosion in the search space. In order to And a solution of excellent quality for this problem, a constructive heuristic algorithm is presented in this paper. In each step of the algorithm, a sensitivity index is used to add a circuit (transmission line or transformer) or a capacitor bank (fixed or variable) to the system. This sensitivity index is obtained solving the problem considering the numbers of circuits and capacitors banks to be added (relaxed problem), as continuous variables. The relaxed problem is a large and complex nonlinear programming and was solved through a higher order interior point method. The paper shows results of several tests that were performed using three well-known electric energy systems in order to show the possibility and the advantages of using the AC model. ©2007 IEEE.
Resumo:
An optimization technique to solve distribution network planning (DNP) problem is presented. This is a very complex mixed binary nonlinear programming problem. A constructive heuristic algorithm (CHA) aimed at obtaining an excellent quality solution for this problem is presented. In each step of the CHA, a sensitivity index is used to add a circuit or a substation to the distribution network. This sensitivity index is obtained solving the DNP problem considering the numbers of circuits and substations to be added as continuous variables (relaxed problem). The relaxed problem is a large and complex nonlinear programming and was solved through an efficient nonlinear optimization solver. A local improvement phase and a branching technique were implemented in the CHA. Results of two tests using a distribution network are presented in the paper in order to show the ability of the proposed algorithm. ©2009 IEEE.
Resumo:
This paper proposes a heuristic constructive multi-start algorithm (HCMA) to distribution system restoration in real time considering distributed generators installed in the system. The problem is modeled as nonlinear mixed integer and considers the two main goals of the restoration of distribution networks: minimizing the number of consumers without power and the number of switching. The proposed algorithm is implemented in C++ programming language and tested using a large real-life distribution system. The results show that the proposed algorithm is able to provide a set of feasible and good quality solutions in a suitable time for the problem. © 2011 IEEE.