8 resultados para Geo-spatial datasets

em Reposit


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Considering the importance of spatial issues in transport planning, the main objective of this study was to analyze the results obtained from different approaches of spatial regression models. In the case of spatial autocorrelation, spatial dependence patterns should be incorporated in the models, since that dependence may affect the predictive power of these models. The results obtained with the spatial regression models were also compared with the results of a multiple linear regression model that is typically used in trips generation estimations. The findings support the hypothesis that the inclusion of spatial effects in regression models is important, since the best results were obtained with alternative models (spatial regression models or the ones with spatial variables included). This was observed in a case study carried out in the city of Porto Alegre, in the state of Rio Grande do Sul, Brazil, in the stages of specification and calibration of the models, with two distinct datasets.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

P>In livestock genetic resource conservation, decision making about conservation priorities is based on the simultaneous analysis of several different criteria that may contribute to long-term sustainable breeding conditions, such as genetic and demographic characteristics, environmental conditions, and role of the breed in the local or regional economy. Here we address methods to integrate different data sets and highlight problems related to interdisciplinary comparisons. Data integration is based on the use of geographic coordinates and Geographic Information Systems (GIS). In addition to technical problems related to projection systems, GIS have to face the challenging issue of the non homogeneous scale of their data sets. We give examples of the successful use of GIS for data integration and examine the risk of obtaining biased results when integrating datasets that have been captured at different scales.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tick-borne zoonoses (TBZ) are emerging diseases worldwide. A large amount of information (e.g. case reports, results of epidemiological surveillance, etc.) is dispersed through various reference sources (ISI and non-ISI journals, conference proceedings, technical reports, etc.). An integrated database-derived from the ICTTD-3 project (http://www.icttd.nl)-was developed in order to gather TBZ records in the (sub-)tropics, collected both by the authors and collaborators worldwide. A dedicated website (http://www.tickbornezoonoses.org) was created to promote collaboration and circulate information. Data collected are made freely available to researchers for analysis by spatial methods, integrating mapped ecological factors for predicting TBZ risk. The authors present the assembly process of the TBZ database: the compilation of an updated list of TBZ relevant for (sub-)tropics, the database design and its structure, the method of bibliographic search, the assessment of spatial precision of geo-referenced records. At the time of writing, 725 records extracted from 337 publications related to 59 countries in the (sub-)tropics, have been entered in the database. TBZ distribution maps were also produced. Imported cases have been also accounted for. The most important datasets with geo-referenced records were those on Spotted Fever Group rickettsiosis in Latin-America and Crimean-Congo Haemorrhagic Fever in Africa. The authors stress the need for international collaboration in data collection to update and improve the database. Supervision of data entered remains always necessary. Means to foster collaboration are discussed. The paper is also intended to describe the challenges encountered to assemble spatial data from various sources and to help develop similar data collections.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pós-graduação em Ciências Cartográficas - FCT

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Cancer is the second leading cause of death in Argentina, and there is little knowledge about its incidence. The first study based on population-based cancer registry described spatial incidence and indicated that there existed at least county-level aggregation. The aim of the present work is to model the incidence patterns for the most incidence cancer in Córdoba Province, Argentina, using information from the Córdoba Cancer Registry by performing multilevel mixed model approach to deal with dependence and unobserved heterogeneity coming from the geo-reference cancer occurrence. Methods: Standardized incidence rates (world standard population) (SIR) by sex based on 5-year age groups were calculated for 109 districts nested on 26 counties for the most incidence cancers in Cordoba using 2004 database. A Poisson twolevel random effect model representing unobserved heterogeneity between first level-districts and second level-counties was fitted to assess the spatial distribution of the overall and site specific cancer incidence rates. Results: SIR cancer at Córdoba province shown an average of 263.53±138.34 and 200.45±98.30 for men and women, respectively. Considering the ratio site specific mean SIR to the total mean, breast cancer ratio was 0.25±0.19, prostate cancer ratio was 0.12±0.10 and lower values for lung and colon cancer for both sexes. The Poisson two-level random intercepts model fitted for SIR data distributed with overdispersion shown significant hierarchical structure for the cancer incidence distribution. Conclusions: a strong spatial-nested effect for the cancer incidence in Córdoba was observed and will help to begin the study of the factors associated with it.