22 resultados para Data analysis system
em Reposit
Resumo:
Pode-se afirmar que a evolução tecnológica (desenvolvimento de novos instrumentos de medição como, softwares, satélites e computadores, bem como, o barateamento das mídias de armazenamento) permite às Organizações produzirem e adquirirem grande quantidade de dados em curto espaço de tempo. Devido ao volume de dados, Organizações de pesquisa se tornam potencialmente vulneráveis aos impactos da explosão de informações. Uma solução adotada por algumas Organizações é a utilização de ferramentas de sistemas de informação para auxiliar na documentação, recuperação e análise dos dados. No âmbito científico, essas ferramentas são desenvolvidas para armazenar diferentes padrões de metadados (dados sobre dados). Durante o processo de desenvolvimento destas ferramentas, destaca-se a adoção de padrões como a Linguagem Unificada de Modelagem (UML, do Inglês Unified Modeling Language), cujos diagramas auxiliam na modelagem de diferentes aspectos do software. O objetivo deste estudo é apresentar uma ferramenta de sistemas de informação para auxiliar na documentação dos dados das Organizações por meio de metadados e destacar o processo de modelagem de software, por meio da UML. Será abordado o Padrão de Metadados Digitais Geoespaciais, amplamente utilizado na catalogação de dados por Organizações científicas de todo mundo, e os diagramas dinâmicos e estáticos da UML como casos de uso, sequências e classes. O desenvolvimento das ferramentas de sistemas de informação pode ser uma forma de promover a organização e a divulgação de dados científicos. No entanto, o processo de modelagem requer especial atenção para o desenvolvimento de interfaces que estimularão o uso das ferramentas de sistemas de informação.
Resumo:
Cuttings return analysis is an important tool to detect and prevent problems during the petroleum well drilling process. Several measurements and tools have been developed for drilling problems detection, including mud logging, PWD and downhole torque information. Cuttings flow meters were developed in the past to provide information regarding cuttings return at the shale shakers. Their use, however, significantly impact the operation including rig space issues, interferences in geological analysis besides, additional personel required. This article proposes a non intrusive system to analyze the cuttings concentration at the shale shakers, which can indicate problems during drilling process, such as landslide, the collapse of the well borehole walls. Cuttings images are acquired by a high definition camera installed above the shakers and sent to a computer coupled with a data analysis system which aims the quantification and closure of a cuttings material balance in the well surface system domain. No additional people at the rigsite are required to operate the system. Modern Artificial intelligence techniques are used for pattern recognition and data analysis. Techniques include the Optimum-Path Forest (OPF), Artificial Neural Network using Multilayer Perceptrons (ANN-MLP), Support Vector Machines (SVM) and a Bayesian Classifier (BC). Field test results conducted on offshore floating vessels are presented. Results show the robustness of the proposed system, which can be also integrated with other data to improve the efficiency of drilling problems detection. Copyright 2010, IADC/SPE Drilling Conference and Exhibition.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
In this paper a set of Brazilian commercial gasoline representative samples from São Paulo State, selected by HCA, plus six samples obtained directly from refineries were analysed by a high-sensitive gas chromatographic (GC) method ASTM D6733. The levels of saturated hydrocarbons and anhydrous ethanol obtained by GC were correlated with the quality obtained from Brazilian Government Petroleum, Natural Gas and Biofuels Agency (ANP) specifications through exploratory analysis (HCA and PCA). This correlation showed that the GC method, together with HCA and PCA, could be employed as a screening technique to determine compliance with the prescribed legal standards of Brazilian gasoline.
Resumo:
Linear mixed effects models are frequently used to analyse longitudinal data, due to their flexibility in modelling the covariance structure between and within observations. Further, it is easy to deal with unbalanced data, either with respect to the number of observations per subject or per time period, and with varying time intervals between observations. In most applications of mixed models to biological sciences, a normal distribution is assumed both for the random effects and for the residuals. This, however, makes inferences vulnerable to the presence of outliers. Here, linear mixed models employing thick-tailed distributions for robust inferences in longitudinal data analysis are described. Specific distributions discussed include the Student-t, the slash and the contaminated normal. A Bayesian framework is adopted, and the Gibbs sampler and the Metropolis-Hastings algorithms are used to carry out the posterior analyses. An example with data on orthodontic distance growth in children is discussed to illustrate the methodology. Analyses based on either the Student-t distribution or on the usual Gaussian assumption are contrasted. The thick-tailed distributions provide an appealing robust alternative to the Gaussian process for modelling distributions of the random effects and of residuals in linear mixed models, and the MCMC implementation allows the computations to be performed in a flexible manner.
Resumo:
In this work, initial crystallographic studies of human haemoglobin (Hb) crystallized in isoionic and oxygen-free PEG solution are presented. Under these conditions, functional measurements of the O-2-linked binding of water molecules and release of protons have evidenced that Hb assumes an unforeseen new allosteric conformation. The determination of the high-resolution structure of the crystal of human deoxy-Hb fully stripped of anions may provide a structural explanation for the role of anions in the allosteric properties of Hb and, particularly, for the influence of chloride on the Bohr effect, the mechanism by which Hb oxygen affinity is regulated by pH. X-ray diffraction data were collected to 1.87 Angstrom resolution using a synchrotron-radiation source. Crystals belong to the space group P2(1)2(1)2 and preliminary analysis revealed the presence of one tetramer in the asymmetric unit. The structure is currently being refined using maximum-likelihood protocols.
Resumo:
Hemoglobin remains, despite the enormous amount of research involving this molecule, as a prototype for allosteric models and new conformations. Functional studies carried out on Hemoglobin-I from the South-American Catfish Liposarcus anisitsi [1] suggest the existence of conformational states beyond those already described for human hemoglobin, which could be confirmed crystallographically. The present work represents the initial steps towards that goal.
Resumo:
The present study introduces a multi-agent architecture designed for doing automation process of data integration and intelligent data analysis. Different from other approaches the multi-agent architecture was designed using a multi-agent based methodology. Tropos, an agent based methodology was used for design. Based on the proposed architecture, we describe a Web based application where the agents are responsible to analyse petroleum well drilling data to identify possible abnormalities occurrence. The intelligent data analysis methods used was the Neural Network.
Resumo:
In this paper is reported the use of the chromatographic profiles of volatiles to determine disease markers in plants - in this case, leaves of Eucalyptus globulus contaminated by the necrotroph fungus Teratosphaeria nubilosa. The volatile fraction was isolated by headspace solid phase microextraction (HS-SPME) and analyzed by comprehensive two-dimensional gas chromatography-fast quadrupole mass spectrometry (GC. ×. GC-qMS). For the correlation between the metabolic profile described by the chromatograms and the presence of the infection, unfolded-partial least squares discriminant analysis (U-PLS-DA) with orthogonal signal correction (OSC) were employed. The proposed method was checked to be independent of factors such as the age of the harvested plants. The manipulation of the mathematical model obtained also resulted in graphic representations similar to real chromatograms, which allowed the tentative identification of more than 40 compounds potentially useful as disease biomarkers for this plant/pathogen pair. The proposed methodology can be considered as highly reliable, since the diagnosis is based on the whole chromatographic profile rather than in the detection of a single analyte. © 2013 Elsevier B.V..
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Cutting analysis is a important and crucial task task to detect and prevent problems during the petroleum well drilling process. Several studies have been developed for drilling inspection, but none of them takes care about analysing the generated cutting at the vibrating shale shakers. Here we proposed a system to analyse the cutting's concentration at the vibrating shale shakers, which can indicate problems during the petroleum well drilling process, such that the collapse of the well borehole walls. Cutting's images are acquired and sent to the data analysis module, which has as the main goal to extract features and to classify frames according to one of three previously classes of cutting's volume. A collection of supervised classifiers were applied in order to allow comparisons about their accuracy and efficiency. We used the Optimum-Path Forest (OPF), Artificial Neural Network using Multi layer Perceptrons (ANN-MLP), Support Vector Machines (SVM) and a Bayesian Classifier (BC) for this task. The first one outperformed all the remaining classifiers. Recall that we are also the first to introduce the OPF classifier in this field of knowledge. Very good results show the robustness of the proposed system, which can be also integrated with other commonly system (Mud-Logging) in order to improve the last one's efficiency.