191 resultados para Covariantization on the light-cone gauge

em Reposit


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Here we present a possible way to relate the method of covariantizing the gauge-dependent pole and the negative dimensional integration method for computing Feynman integrals pertinent to the light-cone gauge fields. Both techniques are applicable to the algebraic light-cone gauge and dispense with prescriptions to treat the characteristic poles.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Constrained systems in quantum field theories call for a careful study of diverse classes of constraints and consistency checks over their temporal evolution. Here we study the functional structure of the free electromagnetic and pure Yang-Mills fields on the front-form coordinates with the null-plane gauge condition. It is seen that in this framework, we can deal with strictu sensu physical fields.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Since the very beginning of it, perhaps the subtlest of all gauges is the light-cone gauge, for its implementation leads to characteristic singularities that require some kind of special prescription to handle them in a. proper and consistent manner. The best known of these prescriptions is the Mandelstam-Leibbrandt one. In this work we revisit it showing that its status as a mere prescription is not appropriate but rather that its origin can be traced back to fundamental physical properties such as causality and covariantization methods. © World Scientific Publishing Company.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Feynman integrals in the physical light-cone gauge are more difficult to solve than their covariant counterparts. The difficulty is associated with the presence of unphysical singularities due to the inherent residual gauge freedom in the intermediate boson propagators constrained within this gauge choice. In order to circumvent these non-physical singularities, the headlong approach has always been to call for mathematical devices - prescriptions - some successful and others not. A more elegant approach is to consider the propagator from its physical point of view, that is, an object obeying basic principles such as causality. Once this fact is realized and carefully taken into account, the crutch of prescriptions can be avoided altogether. An alternative, third approach, which for practical computations could dispense with prescriptions as well as avoiding the necessity of careful stepwise consideration of causality, would be of great advantage. and this third option is realizable within the context of negative dimensions, or as it has been coined, the negative dimensional integration method (NDIM).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a prescription for light-cone gauge singularities which embeds in it causality and show that it results in simpler and less demanding integrals to be performed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work we propose two Lagrange multipliers with distinct coefficients for the light-front gauge that leads to the complete (non-reduced) propagator. This is accomplished via (n · A)2 + (∂ · A) 2 terms in the Lagrangian density. These lead to a well-defined and exact though Lorentz non invariant light-front propagator.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The only calculations performed beyond one-loop level in the light-cone gauge make use of the Mandelstam-Leibbrandt (ML) prescription in order to circumvent the notorious gauge dependent poles. Recently we have shown that in the context of negative dimensional integration method (NDIM) such prescription can be altogether abandoned, at least in one-loop order calculations. We extend our approach, now studying two-loop integrals pertaining to two-point functions. While previous works on the subject present only divergent parts for the integrals, we show that our prescriptionless method gives the same results for them, besides finite parts for arbitrary exponents of propagators. (C) 2000 Elsevier B.V. B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pós-graduação em Física - IFT

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We use the light-front machinery to study the behavior of a relativistic free particle and obtain the quantum commutation relations from the classical Poisson brackets. We argue that their usual projection onto the light-front coordinates from the covariant commutation relations show that there is an inconsistency in the expected correlation between canonically conjugate variables time x(+) and energy p(-). This incompatibility between canonical conjugate variables in the light front is discussed in the context of Poisson brackets and a suggestion is made on how to avoid it.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The use of light front coordinates in quantum field theories (QFT) always brought some problems and controversies. In this work we explore some aspects of its formalism with respect to the employment of dimensional regularization in the computation of the photon's self-energy at the one-loop level and how the fermion propagator has an important role in the outcoming results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cucumis anguria present dark germinating seeds at 25 degrees C. Seeds without the tegument are photosensitive germinating better in darkness than under continuous white light. However, pre-incubation at 40 degrees C for 48 hours allows the seeds to germinate under continuous white light and the incubation of naked seeds at -0.6MPa restored the light inhibition of seed germination. Our results suggest that the tegument interact with the phytochrome in the control of seed germination in part of the population of seed of C. anguria.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The negative-dimensional integration method (NDIM) seems to be a very promising technique for evaluating massless and/or massive Feynman diagrams. It is unique in the sense that the method gives solutions in different regions of external momenta simultaneously. Moreover, it is a technique whereby the difficulties associated with performing parametric integrals in the standard approach are transferred to a simpler solving of a system of linear algebraic equations, thanks to the polynomial character of the relevant integrands. We employ this method to evaluate a scalar integral for a massless two-loop three-point vertex with all the external legs off-shell, and consider several special cases for it, yielding results, even for distinct simpler diagrams. We also consider the possibility of NDIM in non-covariant gauges such as the light-cone gauge and do some illustrative calculations, showing that for one-degree violation of covariance (i.e. one external, gauge-breaking, light-like vector n μ) the ensuing results are concordant with the ones obtained via either the usual dimensional regularization technique, or the use of the principal value prescription for the gauge-dependent pole, while for two-degree violation of covariance - i.e. two external, light-like vectors n μ, the gauge-breaking one, and (its dual) n * μ - the ensuing results are concordant with the ones obtained via causal constraints or the use of the so-called generalized Mandelstam-Leibbrandt prescription. © 1999 Elsevier Science B.V.