82 resultados para Computer-Aided Engineering (CAD, CAE)
em Reposit
Resumo:
This paper describes a case of a rehabilitation involving Computer Aided Design/Computer Aided Manufacturing (CAD-CAM) system in implant supported and dental supported prostheses using zirconia as framework. The CAD-CAM technology has developed considerably over last few years, becoming a reality in dental practice. Among the widely used systems are the systems based on zirconia which demonstrate important physical and mechanical properties of high strength, adequate fracture toughness, biocompatibility and esthetics, and are indicated for unitary prosthetic restorations and posterior and anterior framework. All the modeling was performed by using CAD-CAM system and prostheses were cemented using resin cement best suited for each situation. The rehabilitation of the maxillary arch using zirconia framework demonstrated satisfactory esthetic and functional results after a 12-month control and revealed no biological and technical complications. This article shows the important of use technology CAD/CAM in the manufacture of dental prosthesis and implant-supported.
Resumo:
The isotypes of RAR and RXR are retinoic acid and retinoid X acid receptors, respectively, whose ligand-binding domain contains the ligand-dependent activation function, with distinct pharmacological targets for retinoids, involved in the treatment of various cancers and skin diseases. Due to the major challenge which cancer treatment and cure still imposes after many decades to the international scientific community, there is actually considerable interest in new ligands with increased bioactivity. We have focused on the retinoid acid receptor, which is considered an interesting target for drug design. In this work, we carried out density functional geometry optimizations, and different docking procedures. We performed screening in a large database (hundreds of thousands of molecules which we optimized at the AM1 level) yielding a set of potential bioactive ligands. A new ligand was selected and optimized at the B3LYP/6-31G* level. A flexible docking program was used to investigate the interactions between the receptor and the new ligand. The result of this work is compared with several crystallographic ligands of RAR. Our theoretically more bioactive new-ligand indicates stronger and more hydrogen bonds as well as hydrophobic interactions with the receptor. (c) 2005 Wiley Periodicals, Inc.
Resumo:
This paper presents a Computer Aided Diagnosis (CAD) system that automatically classifies microcalcifications detected on digital mammograms into one of the five types proposed by Michele Le Gal, a classification scheme that allows radiologists to determine whether a breast tumor is malignant or not without the need for surgeries. The developed system uses a combination of wavelets and Artificial Neural Networks (ANN) and is executed on an Altera DE2-115 Development Kit, a kit containing a Field-Programmable Gate Array (FPGA) that allows the system to be smaller, cheaper and more energy efficient. Results have shown that the system was able to correctly classify 96.67% of test samples, which can be used as a second opinion by radiologists in breast cancer early diagnosis. (C) 2013 The Authors. Published by Elsevier B.V.
Resumo:
The high competitiveness and the search for newtechnologies that differentiate the product from the project,require the use of new digital tools. The computer aideddesign - Computed Aided Design (CAD), with electronicmodeling, simulation, structural analysis and production,performed in a virtual environment through the applicationof specific software, are available but their use is stilllimited. There are various software available in languagesand extensions to industrial production which, from 3Dmodeling, they can manage through Computer NumericalControl - Computed Numerical Control (CNC) machiningcenters, laminating, stamping, mold making and otherprocesses productive. This project aims to encouragecreativity and entrepreneurship in the community throughthe provision of technology computer aided design - CAD,with a view to implementation of machining technology.
Resumo:
With the advancement of computer technology and the availability of technology computer aided design (CAD) errors in the designs are getting smaller. To this end the project aims to assess the reliability of the machine (CNC), which was designed by students of mechanical engineering college engineering - UNESP Bauru, by designing, modeling, simulation and machining an airfoil automotive. The profile template selected for the study will be a NACA 0012 machined plates in medium density fiberboard (MDF) and will be performed with a structural analysis simulation using finite elements and a software CFD (Computational Fluid Dynamics), and test the real scale model in a wind tunnel. The results obtained in the wind tunnel and CFD software will be compared to see the error in the machining process.
Resumo:
This study aims to demonstrate the importance of computer-aided design and drafting (CADD) software for mechanical engineers. In addition, evaluate the software: Inventor 2015, Creo 3.0 and Solid Edge ST8, developed by consolidate companies in the market. In order to accomplish those goals, software application and its advantages will be demonstrated for the industry and for the academia. The evaluation process consists in modeling two mechanical assemblies, in order to compare functional aspects among the software. At the end, it is concluded that the learning of CADD software is of great importance also is the basis for using Computer-aided Engineering (CAE) and Computer-Aided Manufacturing (CAM) tools. Furthermore, it is suggested that Inventor and Solid Edge are more likely to be used in the academia
Resumo:
The advance in the graphic computer's techniques and computer's capacity of processing made possible applications like the human anatomic structures modeling, in order to investigate diseases, surgical planning or even provide images for training of Computer Aided Diagnosis (CAD). On this context, this work exhibits an anatomical model of cardiac structures represented in a tridimensional environment. The model was represented with geometrical elements and has anatomical details, as the different tunics that compose the cardiac wall and measures that preserves the characteristics found on real structures. The validation of the anatomical model was made through quantitative comparations with real structures measures, available on specialized literature. The results obtained, evaluated by two specialists, are compatible with real anatomies, respecting the anatomical particularities. This degree of representation will allow the verification of the influence of radiological parameters, morphometric peculiarities and stage of the cardiac diseases on the quality of the images, as well as on the performance of the CAD. © 2010 IEEE.
Resumo:
The aim of this study was to evaluate the influence of 2 different surface polishing procedures - glazing (GZ) and manual polishing (MP) - on the roughness of ceramics processed by computer-aided design/computer-aided manufacturing (CAD/CAM) and conventional systems (stratification technique). Eighty ceramic discs (diameter: 8 mm, thickness: 1 mm) were prepared and divided among 8 groups (n = 10) according to the type of ceramic disc and polishing method: 4 GZ and 4 MP. Specimens were glazed according to each manufacturer's recommendations. Two silicone polishing points were used on the ceramic surface for manual polishing. Roughness was measured using a surface roughness tester. The roughness measurements were made along a distance of 2 mm on the sample surface and the speed of reading was 0.1 mm/s. Three measurements were taken for each sample. The data (μm) were statistically analyzed using analysis of variance (ANOVA) and Tukey's test (α = 0.05). Qualitative analysis was performed using scanning electron microscopy (SEM). The mean (± SD) roughness values obtained for GZ were: 1.1 ± 0.40 μm; 1.0 ± 0.31 μm; 1.6 ± 0.31 μm; and 2.2 ± 0.73 μm. For MP, the mean values were: 0.66 ± 0.13 μm; 0.43 ± 0.14 μm; 1.6 ± 0.55 μm; and 2.0 ± 0.63 μm. The mean roughness values were significantly affected by the ceramic type (P = 0.0001) and polishing technique (P = 0.0047). The SEM images confirmed the roughness data. The manually polished glass CAD/CAM ceramics promoted lower surface roughness than did the glazed feldspathic dental ceramics.
Resumo:
This paper considers a study of the anatomical features of the cardiac system and a three-dimensional model of the different tunics that comprise the heart wall, for processing and quality control of radiological images. The structures are built by the layer overlapping method, where a layer can be understood as a slice of the three-dimensional object. The pericardium, myocardium and endocardium were represented with three-dimensional cylinders and hexagons. The spatial arrangement of the cardiac system is determined by an background image of a real model, which values are defined according to the shape of the region and on the anatomical patients characteristics. The results are significant, considering the anatomical structures details, as well as the representation of the thicknesses of the regions of the heart wall. The validation of the anatomical model was accomplished through comparisons with dimensions obtained from a real model and allows verifying that the model is appropriate. The degree of representation will allow the verification of the influence of radiological parameters, morphometric peculiarities and stage of the diseases on the quality of the images, as well as on the performance of the Computer-Aided Diagnosis (CAD).
Resumo:
In all segments, the companies are looking for the highest productivity with the lowest possible cost, and in the construction industry, the thinking is the same. Over time, techniques that generate more productivity supplanted previous techniques; an example is the CAD technology that replaced free drawings in projects execution. However, the Computer Aided Design (CAD) technology does not deal with certain factors that permeate the entire project. It is required the use of other techniques to supply this need in traditional projects. For example, a software for schedule management, another for assets management and a person who makes calculations for estimates and budgets. The BIM (Building Information Modeling) technology aims to integrate all this information, facilitating the communication among members of a work team and reducing the time required to carry out the project. This work is a applied research, a descriptive research, carried out through modeling and simulation, processes inherent in the use of BIM, a survey was also used only to contextualization. BIM was used for a soccer stadium roof project, in order to verify the feasibility of such use through the analysis of: BIM tools, difficulties encountered and implications of BIM use, and comparison of traditional methods and the use of BIM. To aid the contextualization, a survey was conducted to verify the use of BIM in medium and small companies
Resumo:
The use of computer-assisted technologies such as CAD - Computed Aided Design, CAM - Computed Aided Manufacturing, CAE - Computed Aided Engineering and CNC - Computed Numerical Control, are priorities in engineering and product designers. However, the dimensional measurement between the virtual and the real product design requires research, and dissemination procedures among its users. This work aims to use these technologies, through analysis and measurement of a CNC milling machine, designed and assembled in the university. Through the use of 3D scanning, and analyzing images of the machined samples, and its original virtual files, it was possible to compare the sizes of these samples in counterposition to the original virtual dimensions, we can state that the distortions between the real and virtual, are within acceptable limits for this type of equipment. As a secondary objective, this work seeks to disseminate and make more accessible the use of these technologies.
Resumo:
Computer-aided design/computer-aided manufacturing images can be taken through either direct or indirect imaging. For the indirect systems, the digitalization is obtained from the impression material or cast, and for the direct ones the image is taken directly from the mouth using intraoral scanners.The direct acquisition systems have been constantly improved because these are less invasive, quicker, and more precise than the conventional method. Besides, the digital images can be easily stored for a long time. Therefore, the aim of this paper was to describe and discuss based on the literature the main direct image acquisition systems available on the market: CEREC Bluecam (Sirona), Lava C.O.S. System (3M ESPE), iTero System (Cadent/Straumann), and E4D System (D4D Technologies).
Resumo:
A green ceramic tape micro heat exchanger was developed using LTCC technology. The device was designed by using a CAD software and 2D and 3D simulations using a CFD package (COMSOL Multiphysics) to evaluate the fluid behavior in the microchannels. The micro heat exchanger is composed of five thermal exchange plates in cross flow arrangement and two connecting plates; heat exchanger dimensions are 26 × 26 × 6 mm3. Preliminary tests were carried out to characterize the device both in atmospheric pressure and in vacuum. The same techniques used in vacuum technology were applied to check the rotameters and to prevent device leakages. Thermal performance of the micro heat exchanger was experimentally tested. © 2009 Elsevier B.V. All rights reserved.
Resumo:
Background: This article describes a clinical report with a new system for guided surgical treatment and immediate load prosthesis in the flapless surgical technique. Case report: Based on a computed tomography (CT) of a 64 - year-old edentulous patient, the cross sections were reformatted and used to construct a virtual planning of the implants and a guide template in Dental Slice. Six dental implants were placed in the maxilla and mandible using a Slice Guide System. Following a 30-month in maxilla and 24-month in mandible healing period, the clinical and radiographic evaluation and computed tomography (CT) showed good clinical stability. The Slice Guide System proved satisfactory for the Flapless Surgical Technique in dental implants.