53 resultados para Brain-targeting System
em Reposit
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Aims: To determine the occurrence of isolated and recurrent episodes of conductive hearing loss (CHL) during the first two years of life in very low birth weight (VLBW) infants with and without bronchopulmonary dysplasia (BPD).Study design, subjects and outcome measures: In a longitudinal clinical study. 187 children were evaluated at 6, 9, 12,15 18 and 24 months of age by visual reinforcement audiometry, tympanometry and auditory brain response system.Results: of the children with BPD, 54.5% presented with episodes of CHL, as opposed to 34.7% of the children without BPD. This difference was found to be statistically significant. The recurrent or persistent episodes were more frequent among children with BPD (25.7%) than among those without BPD (8.3%). The independent variables that contributed to this finding were small for gestational age and a 5 min Apgar score.Conclusions: Recurrent CHL episodes are more frequent among VLBW infants with BPD than among VLBW infants without BPD. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
The midbrain dorsal periaqueductal gray (DPAG) is part of the brain defensive system involved in active defense reactions to threatening stimuli. Corticotrophin releasing factor (CRF) is a peptidergic neurotransmitter that has been strongly implicated in the control of both behavioral and endocrine responses to threat and stress. We investigated the effect of the nonspecific CRF receptor agonist, ovine CRF (oCRF), injected into the DPAG of mice, in two predator-stress situations, the mouse defense test battery (MDTB), and the rat exposure test (RET). In the MDTB, oCRF weakly modified defensive behaviors in mice confronted by the predator (rat); e.g. it increased avoidance distance when the rat was approached and escape attempts (jump escapes) in forced contact. In the RET, drug infusion enhanced duration in the chamber while reduced tunnel and surface time, and reduced contact with the screen which divides the subject and the predator. oCRF also reduced both frequency and duration of risk assessment (stretch attend posture: SAP) in the tunnel and tended to increase freezing. These findings suggest that patterns of defensiveness in response to low intensity threat (RET) are more sensitive to intra-DPAG oCRF than those triggered by high intensity threats (MDTB). Our data indicate that CRF systems may be functionally involved in unconditioned defenses to a predator, consonant with a role for DPAG CRF systems in the regulation of emotionality. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Dendritic cells play a central role in the regulation of immunological reactivity. The existence of functionally specialized populations of dendritic cells in the skin is a consequence of qualitatively different attacks on our organism. slanDCs are human inflammatory dendritic cells that are characterized by the specific expression of the carbohydrate 6-sulfo LacNAc (slan). After phenotypic maturation, slanDCs are capable of producing very high amounts of proinflammatory mediators such as IL-12, TNF-, IL-1 and IL-23. Recent data describe a potential role of slanDCs in a number of different diseases like psoriasis, lupus erythematosus, and tumors, thus opening up new areas of research on their respective pathogenesis. Furthermore, a slanDC-specific targeting system has been developed as a basis for direct therapeutic manipulation. Future challenges of slanDC research include deepening our understanding of the significance of slanDCs in the regulation of adaptive and innate immune responses, as well as translating this knowledge into therapeutic options.
Resumo:
Haloperidol is a dopamine receptor antagonist used to treat schizophrenia. When systemically administered in rodents, haloperidol induces catalepsy, a state of immobility very similar to that seen in Parkinson's disease. It is known that many of Parkinson's disease symptoms are dependent on the emotional state since patients are still able to respond to external triggers such as loud noise or visual signaling. Recent data highlighted the importance of glutamatergic neurotransmission in the inferior colliculus (IC) on the cataleptic state induced by haloperidol in rats. Given the importance of IC in the brain aversion system and its connections to motor pathways, and based on the clinical reports of the emotional influence on the motor aspect of Parkinson's disease, the objective of the present study was to evaluate the emotional aspect related to catalepsy induced by intraperitoneal administration of haloperidol. To this end, we analysed ultrasonic vocalizations (UVs) of 22 kHz (indicative of aversion) in rats during the tests of catalepsy, open field and contextual conditioned fear. Systemic administration of haloperidol affected the motor activity, inducing catalepsy and decreasing exploratory activity in the open field. There were no UVs of 22 kHz resulting from treatment with haloperidol in catalepsy or open field tests. In the contextual conditioned fear test, haloperidol increased freezing when administered before the test, but decreased freezing on test day when administered before training. In this same test, haloperidol decreased the UVs on the day it was administered (training or test). The catalepsy induced by systemic administration of haloperidol seems to have also affected the motor aspect of UVs. In this way, it was not possible to clarify the existence of an aversive emotional state associated haloperidol induced catalepsy
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Este estudo objetivou caracterizar a resposta imune celular no sistema nervoso central (SNC) de eqüinos com infecção crônica experimental por Trypanosoma evansi. Para este propósito, foram utilizados os métodos histoquímicos (HE) e imunoistoquímicos do complexo avidina-biotina peroxidase (ABC). O fenótipo do infiltrado celular foi caracterizado com o auxílio de anticorpos anti - CD3, para linfócitos T e antiBLA36 para linfócitos B. Os macrófagos foram marcados com anticorpo antiantígenos da linhagem mielóide/histiócitos (Clone Mac387). A lesão no sistema nervoso central (SNC) dos eqüinos infectados com T. evansi foi caracterizada como meningoencefalite e meningomielite não supurativa. A gravidade das lesões variou em diferentes segmentos do SNC, refletindo distribuição irregular das alterações vasculares. A distribuição de células T e B e antígenos do complexo maior de histocompatibilidade classe II foram avaliados dentro do SNC de eqüinos cronicamente infectados com T. evansi. O infiltrado perivascular e meníngeo eram constituídos predominantemente por células T e B. Macrófagos foram raramente visualizados. T.evansi não foi identificado no parênquima do SNC dos eqüinos.
Resumo:
The hypothalamus plays especially important roles in various endocrine, autonomic, and behavioral responses that guarantee the survival of both the individual and the species. In the rat, a distinct hypothalamic defensive circuit has been defined as critical for integrating predatory threats, raising an important question as to whether this concept could be applied to other prey species. To start addressing this matter, in the present study, we investigated, in another prey species (the mouse), the pattern of hypothalamic Fos immunoreactivity in response to exposure to a predator (a rat, using the Rat Exposure Test). During rat exposure, mice remained concealed in the home chamber for a longer period of time and increased freezing and risk assessment activity. We were able to show that the mouse and the rat present a similar pattern of hypothalamic activation in response to a predator. of particular note, similar to what has been described for the rat, we observed in the mouse that predator exposure induces a striking activation in the elements of the medial hypothalamic defensive system, namely, the anterior hypothalamic nucleus, the dorsomedial part of the ventromedial hypothalamic nucleus and the dorsal premammillary nucleus. Moreover, as described for the rat, predator-exposed mice also presented increased Fos levels in the autonomic and parvicellular parts of the paraventricular hypothalamic nucleus, lateral preoptic area and subfornical region of the lateral hypothalamic area. In conclusion, the present data give further support to the concept that a specific hypothalamic defensive circuit should be preserved across different prey species. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The aim of this study was to evaluate the application of PCR technique for the detection of BoHV-5 in routinely formalin-fixed, paraffin-embedded brain tissues in 20 naturally infected calves affected by fatal meningoencephalitis. Brains were divided into two halves, one kept fresh for virus isolation and PCR assay, targeting the glycoprotein C gene from BoHV-5 genome. The other half brain, corresponding to posterior cortex region, was submitted to formalin fixation and embedded into paraffin blocks for microscopic evaluation and total DNA isolation. Most of the slides showed severe multifocal non-supurative encephalitis with neuronal degeneration, neurophagia, and no acidophilic intranuclear inclusions could be found in neurons and glial. The 20 fresh samples were confirmed, by virus isolation and PCR assay, as having the BoHV-5 virus and, respective glicoprotein C sequence, while 15 of 20 formalin-fixed, paraffin-embedded samples were considered positive for the same analysis. The results revealed the first description of PCR efficiency, applied to formalin-fixed, paraffin-embedded brain collected from naturally infected calves, improving the detection of BoHV-5 from archival samples in South America. (c) 2007 Published by Elsevier B.V.
Resumo:
The 5-hydroxytryptamine (5-HT)(1A) receptor system plays a prominent role in a variety of physiological functions and behavior and regulation of this responsiveness of the receptor system has been implicated in the central regulation of water intake and urinary excretion. The lateral septal area (LSA) exhibits a high density of 5-HT1A receptors, as well as a subpopulation of oxytocin (OT) receptors. Here we report the effects of pMPPF (a selective 5-HT1A antagonist), d(CH2)(5)[Tyr(Me)(2)Thr(4), Orn(5), Tyr(NH2)(9)]-vasotocin (an OT antagonist), and that 5-HT1A receptor system is regulated as a consequence of activation of the Na+ channel by veratridine. Cannulae were implanted into the LSA of rats to enable the introduction of the drugs. Injections of 8-OH-DPAT (a 5-HT1A agonist) blocked water intake and increased urinary excretion, while pMPPF or the OT antagonist injected bilaterally before 8-OH-DPAT blocked its inhibitory effect on water intake and its diuretic effect. In contrast, increases in extracellular sodium levels induced by the sodium channel modulator, veratridine, enhanced 5-HT1A responsiveness for water intake and reduced the diuretic effects induced by 8-OH-DPAT. These trials demonstrated that the responsiveness of the 5-HT1A receptor system in the LSA can be enhanced or depressed as a consequence of an induced rise in extracellular sodium. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)