6 resultados para water budget
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
In the experimental area of the Department of Environmental Sciences (21.85° S; 48.43° W; 786 m), in the School of Agronomical Sciences, UNESP, Botucatu, SP, an experiment was carried out using peanut (Arachis hypogaea L), cv. IAC-TATU-ST, to quantify the crop daily water requirements. During the peanut crop cycle, the environmental variables, such as rainfall, air temperature, air relative humidity, soil matric potential, soil heat flux and radiation balance, have been registered continually. These measurements were used to calculate the daily crop evapotranspiration, by the Bowen ratio method. The water replacement required by the peanut crop was done the dripping irrigation system, oriented by a dynamic agrometeorological model that computes the entrance and exit of water in the soil. During the peanut crop cycle, 9.0 mm of water was used from sowing to emergence; 67.0 mm of water, in the growth stage; 166.0 mm, in the flowering stage; 124.0 mm in the final stage and 46.0 mm from physiological maturity to harvest. Oot of 412.0 mm of the total consumption, 246.0 mm of water was supplied by irrigation and 166.0 mm by the rain. The grain yield was 3.15 t ha-1 for 15% of humidity, and the water use efficiency was 0.764 kg m-3.
Resumo:
A dynamic systems water resources simulation model was developed as a tool to help to analyze water resources management alternatives for the Piracicaba, Capivari and Jundiaí River Water Basins (BH-PCJ). Different politics policy were simulated for 40-year. The model estimates water supply and demand, as well as contamination load from several consumers. Six runs were performed using average precipitation value, changing water supply and demand, and different volumes diverted from BH-PCJ to BH-Alto Tietê For the Business as Usual, the Sustainability Index went from 0.41 in 2010 to 0.22 by 2050; the Water Use Index changed from 80.7% in 2010, to 125.5% by 2050; and the Falkenmark Index changed from 1,302 m 3 person -1 year -1 in 2010 to 774 m 3 P -1 year -1 by 2050. It was noticed that sanitation is one of the biggest concerns in the near future at PCJ River Basin.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Many efforts are currently oriented toward extracting more information from ocean color than the chlorophyll a concentration. Among biological parameters potentially accessible from space, estimates of phytoplankton cell size and light absorption by colored detrital matter (CDM) would lead to an indirect assessment of major components of the organic carbon pool in the ocean, which would benefit oceanic carbon budget models. We present here 2 procedures to retrieve simultaneously from ocean color measurements in a limited number of bands, magnitudes, and spectral shapes for both light absorption by CDM and phytoplankton, along with a size parameter for phytoplankton. The performance of the 2 procedures was evaluated using different data sets that correspond to increasing uncertainties: ( 1) measured absorption coefficients of phytoplankton, particulate detritus, and colored dissolved organic matter ( CDOM) and measured chlorophyll a concentrations and ( 2) SeaWiFS upwelling radiance measurements and chlorophyll a concentrations estimated from global algorithms. In situ data were acquired during 3 cruises, differing by their relative proportions in CDM and phytoplankton, over a continental shelf off Brazil. No local information was introduced in either procedure, to make them more generally applicable. Over the study area, the absorption coefficient of CDM at 443 nm was retrieved from SeaWiFS radiances with a relative root mean square error (RMSE) of 33%, and phytoplankton light absorption coefficients in SeaWiFS bands ( from 412 to 510 nm) were retrieved with RMSEs between 28% and 33%. These results are comparable to or better than those obtained by 3 published models. In addition, a size parameter of phytoplankton and the spectral slope of CDM absorption were retrieved with RMSEs of 17% and 22%, respectively. If these methods are applied at a regional scale, the performances could be substantially improved by locally tuning some empirical relationships.
Resumo:
Water vapor is an atmospheric component of major interest in atmospheric science because it affects the energy budget and plays a key role in several atmospheric processes. The Amazonian region is one of the most humid on the planet, and land use change is able to affect the hydrologic cycle in several areas and consequently to generate severe modifications in the global climate. Within this context, accessing the error associated with atmospheric humidity measurement and the validation of the integrated water vapor (IWV) quantification from different techniques is very important in this region. Using data collected during the Radiation, Cloud, and Climate Interactions in Amazonia during the Dry-to-Wet Transition Season (RACCI/DRY-TO-WET), an experiment carried out in southwestern Amazonia in 2002, this paper presents quality analysis of IWV measurements from RS80 radiosondes, a suite of GPS receivers, an Aerosol Robotic Network (AERONET) solar radiometer, and humidity sounding from the Humidity Sounder for Brazil (HSB) aboard the Aqua satellite. When compared to RS80 IWV values, the root-mean-square (RMS) from the AERONET and GPS results are of the order of 2.7 and 3.8 kg m(-2), respectively. The difference generated between IWV from the GPS receiver and RS80 during the daytime was larger than that of the nighttime period because of the combination of the influence of high ionospheric activity during the RACCI experiment and a daytime drier bias from the RS80.