2 resultados para viral networks

em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"


Relevância:

40.00% 40.00%

Publicador:

Resumo:

This work aimed to compare the predictive capacity of empirical models, based on the uniform design utilization combined to artificial neural networks with respect to classical factorial designs in bioprocess, using as example the rabies virus replication in BHK-21 cells. The viral infection process parameters under study were temperature (34°C, 37°C), multiplicity of infection (0.04, 0.07, 0.1), times of infection, and harvest (24, 48, 72 hours) and the monitored output parameter was viral production. A multilevel factorial experimental design was performed for the study of this system. Fractions of this experimental approach (18, 24, 30, 36 and 42 runs), defined according uniform designs, were used as alternative for modelling through artificial neural network and thereafter an output variable optimization was carried out by means of genetic algorithm methodology. Model prediction capacities for all uniform design approaches under study were better than that found for classical factorial design approach. It was demonstrated that uniform design in combination with artificial neural network could be an efficient experimental approach for modelling complex bioprocess like viral production. For the present study case, 67% of experimental resources were saved when compared to a classical factorial design approach. In the near future, this strategy could replace the established factorial designs used in the bioprocess development activities performed within biopharmaceutical organizations because of the improvements gained in the economics of experimentation that do not sacrifice the quality of decisions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Next-generation sequencing (NGS) allows for sampling numerous viral variants from infected patients. This provides a novel opportunity to represent and study the mutational landscape of Hepatitis C Virus (HCV) within a single host.Results: Intra-host variants of the HCV E1/E2 region were extensively sampled from 58 chronically infected patients. After NGS error correction, the average number of reads and variants obtained from each sample were 3202 and 464, respectively. The distance between each pair of variants was calculated and networks were created for each patient, where each node is a variant and two nodes are connected by a link if the nucleotide distance between them is 1. The work focused on large components having > 5% of all reads, which in average account for 93.7% of all reads found in a patient. The distance between any two variants calculated over the component correlated strongly with nucleotide distances (r = 0.9499; p = 0.0001), a better correlation than the one obtained with Neighbour-Joining trees (r = 0.7624; p = 0.0001). In each patient, components were well separated, with the average distance between (6.53%) being 10 times greater than within each component (0.68%). The ratio of nonsynonymous to synonymous changes was calculated and some patients (6.9%) showed a mixture of networks under strong negative and positive selection. All components were robust to in silico stochastic sampling; even after randomly removing 85% of all reads, the largest connected component in the new subsample still involved 82.4% of remaining nodes. In vitro sampling showed that 93.02% of components present in the original sample were also found in experimental replicas, with 81.6% of reads found in both. When syringe-sharing transmission events were simulated, 91.2% of all simulated transmission events seeded all components present in the source.Conclusions: Most intra-host variants are organized into distinct single-mutation components that are: well separated from each other, represent genetic distances between viral variants, robust to sampling, reproducible and likely seeded during transmission events. Facilitated by NGS, large components offer a novel evolutionary framework for genetic analysis of intra-host viral populations and understanding transmission, immune escape and drug resistance.