169 resultados para ultraviolet irradiation
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
The xeroderma pigmentosum complementation group B (XPB) protein is involved in both DNA repair and transcription in human cells. It is a component of the transcription factor IIH (TFIIH) and is responsible for DNA helicase activity during nucleotide (nt) excision repair (NER). Its high evolutionary conservation has allowed identification of homologous proteins in different organisms, including plants. In contrast to other organisms, Arabidopsis thaliana harbors a duplication of the XPB orthologue (AtXPB1 and AtXPB2), and the proteins encoded by the duplicated genes are very similar (95% amino acid identity). Complementation assays in yeast rad25 mutant strains suggest the involvement of AtXPB2 in DNA repair, as already shown for AtXPB1, indicating that these proteins may be functionally redundant in the removal of DNA lesions in A. thaliana. Although both genes are expressed in a constitutive manner during the plant life cycle, Northern blot analyses suggest that light modulates the expression level of both XPB copies, and transcript levels increase during early stages of development. Considering the high similarity between AtXPB1 and AtXPB2 and that both of predicted proteins may act in DNA repair, it is possible that this duplication may confer more flexibility and resistance to DNA damaging agents in thale cress. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Glassy films of 0.2[Sb(PO3)(3)]-0,8Sb(2)O(3) with 0.8 mum-thickness were deposited on quartz substrates by electron beam evaporation. A contraction in the film thickness (photoinduced decrease in volume) and photobleaching effect associated with a decrease of up to 25% in the index of refraction has been observed in the films after irradiation near the bandgap (3.89 eV), using the 350.7 nm (3.54 eV) Kr+ ion laser line with 2.5 W/cm(2) for 30 min. A loss of 30% in the phosphorus concentration was measured by wavelength dispersive X-ray microanalysis in the film after laser irradiation with 5.0 W/cm(2) for 1.0 h. These photoinduced changes in the samples are dependent on the power density and intensity profile of the laser beam. Using a Lloyd's mirror setup for continuous wave holography it was possible to record holographic gratings with period from 500 nm up to 20 mum and depth profile of similar to50 nm in the films after laser irradiation with 5.0 W/cm(2) for 1 h. Real-time diffraction efficiency measurements have shown that ultraviolet irradiation induces first a refractive index grating formation, and after this, the photocon traction effect takes place generating an irreversible relief grating. Diffraction efficiency up to 10% was achieved for the recorded gratings. 3D-refraction index measurements and atomic force microscopy images are presented. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Here we describe the application of microparticles (MPs) for the delivery and release of the drug a benzopsoralen. We also evaluated the intracellular distribution and cellular uptake of the drug by using an encapsulation technique for therapeutic optimization. MPs containing the compound 3-ethoxycarbonyl-2H-benzofuro[3,2-f]-1-benzopyran-2-one (psoralen A) were prepared by the solvent evaporation technique, and parameters such as particle size, drug encapsulation efficiency, effect of the encapsulation process on the drug's photochemistry, zeta potential, external morphology, and < i > in vitro release behavior were evaluated. The intracellular distribution of MPs as well as their uptake by tissues were monitored. Size distribution studies using dynamic ligh scattering and scanning electron microscopy revealed that the MPs are spherical in shape with a diameter of 1.4 mu m. They present low tendency toward aggregation, as confirmed by their zeta potential (+10.6 mV). The loading efficiency obtained was 75%. As a consequence of the extremely low diffusivity of the drug in aqueous medium, the drug release profile of the MPs in saline phosphate buffer (pH 7.4) was much slower than that obtained in the biological environment. Among the population of peritoneal phagocytic cells, only macrophages were able to phagocytose poly-d,l-lactic-co-glycolic acid (PLGA) MP. The use of psoralen A in association with ultraviolet light (360 nm) revealed morphological characteristics of cell damage such as cytoplasmic vesiculation, mitochondria condensation, and swelling of both the granular endoplasmatic reticulum and the nuclear membrane. These results indicate that PLGA MP could be a promising delivery system for psoralen in connection with ultraviolet irradiation therapy (PUVA).
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Strains of Trichoderma pseudokoningii are promising objects for genetic studies and cellulase production. Auxotrophic mutants with deficiencies in the biosynthesis of aminoacids, nucleotides and vitamins (up to five markers) in addition to morphological aspects like conidial colour were obtained from two strains of double auxotrophic mutants using UV radiation. In order to compare the cellulolytic capabilities of the T. pseudokoningii (wild type strain), some of its mutants and T. reesei QM9414 we performed semiquantitative cellulase assays and quantitative determination of the enzymes exoglucanase and endoglucanase. The semiquantitative test showed that the strains with minimal mycelial growth rate were better producers. Both tests revealed that two of the studied mutants, TG3 and TG4 presented a yield higher than the wild type, reaching 30% more exoglucanase and 70% more endoglucanase. These results indicate that the wild type was improved for cellulase production. Highly significant values of correlation were found for exoglucanase and endoglucanase activities, suggesting that these enzymes may be co-regulated in T. pseudokoningii.
Resumo:
The skin pigmentation caused by ultraviolet light irradiation as a defense against the carcinogenic action of solar light may lead to early skin aging and to hyperchromia, which treatment requires the use of photo-protective, depigmenting and rejuvenating agents. Recently, there have been used many substances for the prevention and/or treatment of skin aging as well as to lowering the skin pigmentation. Glycolic acid is the alpha-hydroxy acid most commonly used in cosmetic and dermatological prepatations. This use is due to its depigmentating and rejuvenating properties and its efficacy at different concentrations, when incorporated to different kind of excipients.
Resumo:
Sparfloxacin, a difluorquinolone derivative, is a potent antibacterial agent active against a wide range of gram-positive and gram-negative organisms including Streptococcus pneumoniae, Staphylococcus aureus, methicillin resistant S. aureus, Legionella spp, Mycoplasma spp; Chlamydia spp. and Mycobacteria. A drawback of fluorquinolones is their photoreactivity. Sparfloxacin has been studied in terms of therapeutic activities. However, few reports about analytical methods of sparfloxacin are available in the literature. The aim of this study was to determine cytotoxic effects, using sparfloxacin reference substance (SPAX-SR), sparfloxacin tablets (SPAX-COMP) and sparfloxacin tablets submitted UV light during 36 hours (SPAX-COMP.36) solution, and two isolated products (7 and 9) of SPAX-SR submitted UV-C light, in concentrations of 31.25, 62.5, 125 and 250 μg/mL by in vitro mononuclear humane culture cells. The results, statistically analyzed by Teste de Tukey, showed SPAX, SPAX-COMP and SPAX-COMP.36 solutions could reduce the cells number in these conditions. These results could not be observed for products 7 or 9. These results can suggest that isolated product can be less cytotoxic than SPAX-SR, is method can also be used to identified products degradation of sparfloxacin in stability study. However, the low activity achieved with sparfloxacin submitted to UV-light is a source of concern and requires further investigation about its photodegradation mechanism.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Films made from a blend of poly(epsilon-caprolactone) and poly(vinyl chloride) (PCL/PVC) retained high crystallinity in a segregated PCL phase. Structural and morphological changes produced when the films were exposed to high potency ultraviolet (UV) irradiation for 10 h were measured by UV-Vis spectroscopy (UV-Vis), Fourier Transform Infrared Spectroscopy (FTIR), and Scanning Electron Microscopy (SEM). They were different to those observed with homopolymer PCL and PVC films treated under the same conditions. The FTIR spectra of the PCL/PVC blend suggest that blending decreased the susceptibility of the PCL to crystallize when irradiated. Similarly, although scanning electron micrographs of PCL showed evidence of growth of crystalline domains, particularly after UV irradiation, the images of PCL/PVC were fairly featureless. It is apparent that the degradation behavior is strongly influenced by the interaction of the two polymers in the amorphous phase.