12 resultados para tissue processing

em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pós-graduação em Odontologia - FOA

Relevância:

40.00% 40.00%

Publicador:

Resumo:

OBJECTIVES: Despite the recent success regarding the transplantation of tissue-engineered airways, the mechanical properties of these grafts are not well understood. Mechanical assessment of a tissue-engineered airway graft before implantation may be used in the future as a predictor of function. The aim of this preliminary work was to develop a noninvasive image-processing environment for the assessment of airway mechanics.METHOD: Decellularized, recellularized and normal tracheas (groups DECEL, RECEL, and CONTROL, respectively) immersed in Krebs-Henseleit solution were ventilated by a small-animal ventilator connected to a Fleisch pneumotachograph and two pressure transducers (differential and gauge). A camera connected to a stereomicroscope captured images of the pulsation of the trachea before instillation of saline solution and after instillation of Krebs-Henseleit solution, followed by instillation with Krebs-Henseleit with methacholine 0.1 M (protocols A, K and KMCh, respectively). The data were post-processed with computer software and statistical comparisons between groups and protocols were performed.RESULTS: There were statistically significant variations in the image measurements of the medial region of the trachea between the groups (two-way analysis of variance [ANOVA], p<0.01) and of the proximal region between the groups and protocols (two-way ANOVA, p<0.01).CONCLUSIONS: The technique developed in this study is an innovative method for performing a mechanical assessment of engineered tracheal grafts that will enable evaluation of the viscoelastic properties of neo-tracheas prior to transplantation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this study was to investigate the morphology and localisation of calcium hydroxide- and mineral trioxide aggregate (MTA)-induced hard tissue barriers after pulpotomy in dogs' teeth. Pulpotomies were performed on maxillary and mandibular premolars of five dogs. The teeth were assigned into three groups according to the pulp-capping agent used. The pulpal wounds were capped with calcium hydroxide (Ca(OH)(2) - control), MTA or ProRoot MTA, and the cavities were restored with amalgam. After a 90-day follow-up period, the dogs were euthanised and the teeth were examined under scanning electron microscopy (SEM). An image-processing and analysis software was used to delimit the perimeters of the root canal area and the hard tissue barrier to determine the percentage of root canal obliteration. SEM data were used to assess the morphology, localisation and extension of the reparative hard tissue barriers. ProRoot MTA was statistically different from MTA and Ca(OH)(2) (P < 0.05) regarding tissue barrier morphology. Localisation data showed that ProRoot MTA was significantly different from Ca(OH)(2) (P < 0.05) and similar to MTA (P > 0.01; P > 0.05). No statistically significant difference (P > 0.01; P > 0.05) was observed between MTA and Ca(OH)(2). A larger number of complete (centroperipheral) hard tissue barriers with predominance of dentinal tubules was observed to the ProRoot MTA when compared with the Ca(OH)(2) group.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Substances containing chlorhexidine (CHX) have been studied as intracanal medicaments. The aim of the present study was to characterize the response of mouse subcutaneous connective tissue to CHX-containing medications by conventional optical microscopy. The tissue response was evaluated by implanting polyethylene tubes containing one of the substances evaluated: Calen paste + 0.5% CHX, Calen + 2% CHX, 2% CHX gel, and Calen paste (control). After experimental periods of 7, 21, and 63 days, the implants (n = 10) were removed along with the subcutaneous connective tissue. Tissue samples were subjected to histological processing, and sections were stained with hematoxylin and eosin. Qualitative and quantitative analyses of the number of inflammatory cells, blood vessels, and vascularized areas were performed. Results were analyzed by ANOVA and Tukey tests with the significance level set at 5%. We concluded that Calen + 0.5% CHX led to reparative tissue response in contrast with Calen + 2% CHX and 2% CHX gel, which induced persistent inflammatory response, pointing to the aggressive nature of this mixture. When Calen + 2% CHX and 2% CHX gel were compared, the latter induced more intense inflammatory response. Microsc. Res. Tech., 2012. (C) 2012 Wiley Periodicals, Inc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The objective of the present study was to evaluate two different types of root canal sealers: AH Plus (an epoxy resin-based sealer) and Fill Canal (a zinc oxide-eugenol based sealer). A total of 34 root canals with vital pulp from dogs' premolars were used. After instrumentation, the root canals were filled with gutta-percha and AH Plus or gutta-percha and Fill Canal sealers using a classical technique of lateral condensation. After histological processing, the sections were stained with hematoxylineosin or Mallory's trichrome stain. Inflammatory cells or areas of necrosis were not associated with AH Plus. Hard tissue formation apically to the material was observed in 14 specimens. The Fill Canal sealer presented an inflammatory response of moderate intensity in the periapical region, mainly adjacent to the material.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The processing of titanium porous coatings using powder metallurgy technique to achieve a porous structure that allows osseointegration with bone tissue was discussed. The porous microstructure exhibited micropores and interconnected macropores with size ranges that allowed bone ingrowth. The macropores in the coatings were originated from the binder evaporation while the micropore was related with the porous titanium powder and the low compaction pressure used. The in vivo evaluation indicated that osseointegration had occurred between the bone and porous material.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Many neuropsychiatric conditions have a common set of neurological substrates associated with the integration of sensorimotor processing. The teneurins are a recently described family of proteins that play a significant role in visual and auditory development. Encoded on the terminal exon of the teneurin genes is a family of bioactive peptides, termed teneurin C-terminal associated peptides (TCAP), which regulate mood-disorder associated behaviors. Thus, the teneurin-TCAP system could represent a novel neurological system underlying the origins of a number of complex neuropsychiatric conditions. However, it is not known if TCAP-1 exerts its effects as part of a direct teneurin function, whereby TCAP represents a functional region of the larger teneurin protein, or if it has an independent role, either as a splice variant or post-translational proteolytic cleavage product of teneurin. In this study, we show that TCAP-1 can be transcribed as a smaller mRNA transcript. After translation, further processing yields a smaller 15. kDa protein containing the TCAP-1 region. In the mouse hippocampus, immunoreactive (ir) TCAP-1 is exclusively localized to the pyramidal layers of the CA1, CA2 and CA3 regions. Although the localization of TCAP and teneurin in hippocampal regions is similar, they are distinct within the cell as most ir-teneurin is found at the plasma membrane, whereas ir-TCAP-1 is predominantly found in the cytosol. Moreover, in mouse embryonic hippocampal cell culture, FITC-labeled TCAP-1 binds to the plasma membrane and is taken up into the cytosol via dynamin-dependent caveolae-mediated endocytosis. Our data provides novel evidence that TCAP-1 is structurally and functionally distinct from the larger teneurins. © 2012.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The administration of cyclosporine A (CsA) has been associated with significant bone loss and increased bone remodeling. The present investigation was designed to evaluate the effects of CsA on alveolar bone of rats subjected to experimental periodontitis, using histomorphometric and histological analysis. Twenty-four rats were divided into groups with 6 animals each: 1, control; 2, rats with ligature around the lower first molars; 3, rats with ligature around the lower first molars and that were treated with 10 mg CsA/kg of body weight/d; and 4, rats treated with 10 mg CsA/kg of body weight/d. At the end of 30 days, rats were humanely killed and subjected to a histological processing, with analysis of the distance cemento-enamel junction and alveolar bone crest, bone area, eroded bone area, and cemento surface. All of them were assessed at the mesial region of the alveolar bone. The CsA therapy combined with ligature placement decreased bone area and increased the eroded bone area around the tooth surface. The results at the histological analysis showed the same combination and changes. Therefore, in spite of the lack of a direct effect on the alveolar bone height, the CsA therapy intensified the imbalance of the alveolar bone homeostasia in a rat model of experimental periodontitis. © 2013 Elsevier Inc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Stemming from in vitro and in vivo pre-clinical and human models, tissue-engineering-based strategies continue to demonstrate great potential for the regeneration of the pulp-dentin complex, particularly in necrotic, immature permanent teeth. Nanofibrous scaffolds, which closely resemble the native extracellular matrix, have been successfully synthesized by various techniques, including but not limited to electrospinning. A common goal in scaffold synthesis has been the notion of promoting cell guidance through the careful design and use of a collection of biochemical and physical cues capable of governing and stimulating specific events at the cellular and tissue levels. The latest advances in processing technologies allow for the fabrication of scaffolds where selected bioactive molecules can be delivered locally, thus increasing the possibilities for clinical success. Though electrospun scaffolds have not yet been tested in vivo in either human or animal pulpless models in immature permanent teeth, recent studies have highlighted their regenerative potential both from an in vitro and in vivo (i.e., subcutaneous model) standpoint. Possible applications for these bioactive scaffolds continue to evolve, with significant prospects related to the regeneration of both dentin and pulp tissue and, more recently, to root canal disinfection. Nonetheless, no single implantable scaffold can consistently guide the coordinated growth and development of the multiple tissue types involved in the functional regeneration of the pulp-dentin complex. The purpose of this review is to provide a comprehensive perspective on the latest discoveries related to the use of scaffolds and/or stem cells in regenerative endodontics. The authors focused this review on bioactive nanofibrous scaffolds, injectable scaffolds and stem cells, and pre-clinical findings using stem-cell-based strategies. These topics are discussed in detail in an attempt to provide future direction and to shed light on their potential translation to clinical settings.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objective: The purpose of this study was to evaluate the effects of the platelet-rich plasma (PRP) when used in combination with autogenous bone graft and bioabsorbable membrane (Resolut® ) in the treatment of Class  III furcation defects in dogs. Material and method: Class III furcation defects (5 mm in height and in depth) were surgically created in the mandibular third premolars of five mongrel dogs. After nine weeks, the lesions were treated with scaling and root planning and each defect received one of the following treatments: autogenous bone graft + membrane (group C) or PRP + autogenous bone graft + membrane (group T). After a healing period of 90 days, the animals were sacrificed. Routine histological processing and staining with hematoxilyn and eosin and Masson trichrome were performed and a histomorphometric analysis determined the effect of the treatments on periodontal tissue regereneration. Data were analyzed by Hotelling’s T-squared (p < 0.05). Result: No statistically significant difference between C and T groups was observed by the histomorphometric analysis of the furcation area. Both treatment groups demonstrated similar regenerative results with the furcation defects partially filled and periodontal regeneration limited to the experimental notches of the lesions. (p > 0.05). Conclusion: According to the present results, PRP does not enhance the periodontal regeneration in class III furcation defects treated with autogenous bone graft and bioabsorbable membrane.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The purpose of this study was to evaluate the effects of the platelet-rich plasma (PRP) when used in combination with autogenous bone graft and bioabsorbable membrane (Resolut® ) in the treatment of Class  III furcation defects in dogs. Material and method: Class III furcation defects (5 mm in height and in depth) were surgically created in the mandibular third premolars of five mongrel dogs. After nine weeks, the lesions were treated with scaling and root planning and each defect received one of the following treatments: autogenous bone graft + membrane (group C) or PRP + autogenous bone graft + membrane (group T). After a healing period of 90 days, the animals were sacrificed. Routine histological processing and staining with hematoxilyn and eosin and Masson trichrome were performed and a histomorphometric analysis determined the effect of the treatments on periodontal tissue regereneration. Data were analyzed by Hotelling’s T-squared (p < 0.05). Result: No statistically significant difference between C and T groups was observed by the histomorphometric analysis of the furcation area. Both treatment groups demonstrated similar regenerative results with the furcation defects partially filled and periodontal regeneration limited to the experimental notches of the lesions. (p > 0.05). Conclusion: According to the present results, PRP does not enhance the periodontal regeneration in class III furcation defects treated with autogenous bone graft and bioabsorbable membrane.