112 resultados para tin dioxide films
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
Mn(II) doped SnO2 thin films used for shielding fluoride glasses against corrosion were investigated by x-ray absorption spectroscopy (EXAFS and XANE)S at the Sn and Mn K-edges. The effect of firing treatment on the densification of the films was studied. It has been evidenced a partial change of Mn valence from 2.3 to 2.6 upon heating which is attributed to a change of ratios of two Mn sites: grafted divalent Mn ions at the surface of SnO 2 nanocrystallites and trivalent Mn ions embedded into a substitutional solid solution with Sn. © Physica Scripta 2005.
Resumo:
The electrical conductivity of Mn doped SnO2 systems prepared by an organic route (Pechini's method) has been investigated as a function of antimony and niobium concentration. The conductivity increases with the increase of both concentration ions, however, in a different manner. While the conductivity of niobium doped ceramics increases with the power of 1.6 for the entire range of concentrations studied (0.01-0.7 mol%), the conductivity of antimony doped ceramics increases with the power of 1.9 in the range 0.01-0.05 mol% of Sb; 3.7 in the range 0.05-0.30 mol% and 1.8 in the range 0.30-0.70 mol%. This behavior is attributed to the existence of two stable oxidation states for antimony: Sb3+ and Sb5+, while for niobium there is only one: Nb5+. The power of 3.7 for Sb would be related to the segregation of this ion on the grain boundary accompanied by an additional contribution coming from the substitution of Sn2+ by Sb3+ on the grain surface.
Resumo:
Photoconductivity of SnO2 sol-gel films is excited, at low temperature, by using a 266 nm line-fourth harmonic-of a Nd:YAG laser. This line has above bandgap energy and promotes generation of electron-hole pairs, which recombines with oxygen adsorbed at grain boundary. The conductivity increases up to 40 times. After removing the illumination on an undoped SnO2 film, the conductivity remains unchanged, as long as the temperature is kept constant. Adsorbed oxygen ions recombine with photogenerated holes and are continuously evacuated from the system, leaving a net concentration of free electrons into the material, responsible for the increase in the conductivity. For Er doped SnO2, the excitation of conductivity by the laser line has similar behavior, however after removing illumination, the conductivity decreases with exponential-like decay. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
In this work, indium tin oxide (ITO) films were prepared using a wet chemical route, the Pechini method. This consists of a polyesterification reaction between an alpha-hydroxicarboxylate complex (indium citrate and tin citrate) with a polyalcohol (ethylene glycol) followed by a post annealing at 500 degrees C. A 10 at.% of doping of Sn4+ ions into an In2O3 matrix was successfully achieved through this method. In order to characterize the structure, the morphology as well as the optical and electrical properties of the produced ITO films, they were analyzed using different experimental techniques. The obtained films are highly transparent, exhibiting transmittance of about 85% at 550 nm. They are crystalline with a preferred orientation of [222]. Microscopy discloses that the films are composed of grains of 30 nm average size and 0.63 nm RMS roughness. The films' measured resistivity, mobility and charge carrier concentration were 5.8 x 10(-3) Omega cm, 2.9 cm(2)/V s and -3.5 x 10(20)/cm(3), respectively. While the low mobility value can be related to the small grain size, the charge carrier concentration value can be explained in terms of the high oxygen concentration level resulting from the thermal treatment process performed in air. The experimental conditions are being refined to improve the electrical characteristics of the films while good optical, chemical, structural and morphological qualities already achieved are maintained. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
Tin oxide thin films doped with 7 mol% antimony oxide multilayer were prepared by the polymeric precursor method. Morphological characterization revealed films with round-shaped grains, nanometric size (similar to 13 nm), and low roughness. These films display high transmittance (similar to 80%) in the visible range of transmittance spectra, which is desirable for transparent conductive oxide films. Analysis on electrical resistivity versus temperature data showed two different conduction mechanisms toward the temperature range. The gas sensor properties measurement of the thicker thin film revealed good sensibility for the NOx. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
The effect of Sb doping in SnO2 thin films prepared by the sol-gel dip-coating (SGDC) process is investigated. Electronic and structural properties are evaluated through synchrotron radiation measurements by EXAFS and XANES. These data indicate that antimony is in the oxidation state W, and replaces tin atoms (Sn4+), at a grain surface site. Although the substitution yields net free carrier concentration, the electrical conductivity is increased only slightly, because it is reduced by the high grain boundary scattering. The overall picture leads to a shortening of the grain boundary potential, where oxygen vacancies compensate for oxygen adsorbed species, decreasing the trapped charge at grain boundary. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
The surface corrosion process associated with the hydrolysis of fluorozirconate glass, Z-BLAN (53ZrF(4), 20BaF(2), 20NaF, 4LaF(2), 3AlF(3)), and the corrosion protection efficiency of a nanocrystalline transparent SnO2 layer were investigated by X-ray photoelectron spectroscopy. The tin oxide film was deposited by the sol-gel dip-coating process in the presence of Tiron(R) as particle surface modifier agent. The chemical bonding structure and composition of the surface region of coated and non-coated ZBLAN were studied before water contact and after different immersion periods (5-30 min). In contrast to the effects occurring for non-coated glass, where the surface undergoes a rapid selective dissolution of the most soluble species inducing the formation of a new surface phase consisting of stable zirconium oxyfluoride, barium fluoride and lanthanum fluoride species, the results for the SnO2-coated glass showed that the hydrolytic attack induces a filling of the film nanopores by dissolved glass material and the formation of tin oxylluoride and zirconium oxyfluoride species. This process results in a modified film, which acts as a hermetic diffusion barrier protecting efficiently the glass surface. (C) 2006 Elsevier B.V. All rights reserved.
Resumo:
In order to investigate optically excited electronic transport in Er-doped SnO2, thin films are excited with the fourth harmonic of an Nd:YAG laser (266nm) at low temperature, yielding conductivity decay when the illumination is removed. Inspection of these electrical characteristics aims knowledge for electroluminescent devices operation. Based on a proposed model where trapping defects present thermally activated cross section, the capture barrier is evaluated as 140, 108, 100 and 148 meV for doped SnO2, thin films with 0.0, 0.05, 0. 10 and 4.0 at% of Er, respectively. The undoped film has vacancy levels as dominating, whereas for doped films. there are two distinct trapping centers: Er3+ substitutional at Sn lattice sites and Er3+ located at grain boundary. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
The electrochemical oxidation of cyanide in alkaline media was studied at different pH levels on SnO2 doped with Sb supported on titanium, at 25 degrees C, the electrooxidation of CN- at constant current follows a first-order rate law with a half life of t(1/2) = 35 min on SnO2-SbOx electrodes and t(1/2) = 69 min on SnO2-SbOx-RuO2 electrodes, in K2SO4(aq), pH 12, the reaction rate increases with the applied current and tends to reach a plateau when j > 20 mA cm(-2), In the pH range 10-13.5 the reaction rate diminishes as pH is increased owing to an increasing competition between CN- and OH- ions for the electrode surface. Addition of chloride to the solution does not alter the rate law but increases the reaction rate, A mechanism is proposed to explain the observed behaviour.
Resumo:
Structural morphological studies in pure and Ce-doped tin dioxide nanoparticles with high stability against particle growth were performed in samples, obtained using the polymeric precursor method and prepared at different annealing temperatures. A Ce-rich surface layer was used to control the particle size and stabilize SnO2 against particle growth. The formation of this segregated layer can contribute to a decreased surface energy, acting in the driving force, or reducing the surface mobility. Only the cassiterite SnO2 phase was observed below 1000 degreesC and a secondary phase (CeO2) was observed for the Ce-doped SnO2 at temperatures higher than 1000 degreesC, when de-mixing process occurs. The evolution of crystallite size, microstrain and morphology of the nanoparticles with annealing temperatures was investigated by X-ray diffraction (XRD), associated to Rietveld refinements, X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM). (C) 2002 Elsevier B.V. Ltd. All rights reserved.
Resumo:
Dense SnO2-based ceramics (relative density >95%) have been obtained by natural sintering at a moderate temperature (less than or equal to 1300 degrees C) with the help of a small amount of manganese, Further thermal treatments above 1500 degrees C result in grain growth and transport of manganese toward the sample surface. If the ceramic is embedded inside alumina powder, the diffusion of Mn out of the sample and into alumina during such heat treatments leads to a manganese-free body (<40 ppm) which is translucent. The transmission in the visible region depends on sample thickness; 61% was achieved for a 0.05 mm thick sample.
Resumo:
Electro-optical properties of sol-gel derived 2 mol% antimony or niobium doped tin dioxide films have been measured. The electron density has been calculated considering all the relevant scattering mechanisms and experimental conductivity data measured in the range -197 to 25 degrees C. The results support the hypothesis that both ionised impurity scattering and grain boundary scattering have comparable effects in the resistivity of coatings, for free electron density congruent to 5 x 10(18) cm(-3). We have measured variation of photoconductivity excitation with wavelength using xenon and deuterium lamp as light sources. Results show that the main band in the photoconductivity spectrum is dependent on the spectral light source emission, the excitation peak reaching 5 eV (deuterium lamp). This band is due to the recombination process involving oxygen species and photogenerated electron-hole pairs. (C) 1999 Elsevier B.V. B.V. All rights reserved.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The absorption edge and the bandgap transition of sol-gel-dip-coating SnO2 thin films, deposited on quartz substrates, are evaluated from optical absorption data and temperature dependent photoconductivity spectra. Structural properties of these films help the interpretation of bandgap transition nature, since the obtained nanosized dimensions of crystallites are determinant on dominant growth direction and, thus, absorption energy. Electronic properties of the bulk and (110) and (101) surfaces are also presented, calculated by means of density functional theory applied to periodic calculations at B3LYP hybrid functional level. Experimentally obtained absorption edge is compared to the calculated energy band diagrams of bulk and (110) and (101) surfaces. The overall calculated electronic properties in conjunction with structural and electro-optical experimental data suggest that the nature of the bandgap transition is related to a combined effect of bulk and (101) surface, which presents direct bandgap transition.