34 resultados para texture analysis

em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The goal of this work is to assess the efficacy of texture measures for estimating levels of crowd densities ill images. This estimation is crucial for the problem of crowd monitoring. and control. The assessment is carried out oil a set of nearly 300 real images captured from Liverpool Street Train Station. London, UK using texture measures extracted from the images through the following four different methods: gray level dependence matrices, straight lille segments. Fourier analysis. and fractal dimensions. The estimations of dowel densities are given in terms of the classification of the input images ill five classes of densities (very low, low. moderate. high and very high). Three types of classifiers are used: neural (implemented according to the Kohonen model). Bayesian. and an approach based on fitting functions. The results obtained by these three classifiers. using the four texture measures. allowed the conclusion that, for the problem of crowd density estimation. texture analysis is very effective.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Instrumental texture analysis on extruded snacks is widely applied, however there is no scientific consensus about the test and probe types that can be correlated with the sensory texture of snacks. Eleven commercial extruded snacks of different shapes were evaluated instrumentally using different probes and sensorially through descriptive analysis. The snack texture was described using the attributes of hardness, crispness, adhesiveness, fracturability and chewiness. Cylindrical snacks were described through crispness and fracturability, pelleted and shell-shaped snacks by chewiness and ring-shaped snacks by adhesiveness and hardness. Hardness and adhesiveness were correlated with a Warner-Bratzler test using a V shape probe (r = 0.718 and r = 0.763, respectively), while fracturability and chewiness were correlated with a Warner-Bratzler test using a guillotine (r = 0.776 and r = 0.662, respectively). The fairly strong good correlations enable application of these instrumental tests as an indication of the sensory texture of extruded snacks. © 2013 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A acurácia da análise granulométrica depende da obtenção de suspensões de solo completamente dispersas e estáveis para possibilitar a separação das suas frações granulométricas. O objetivo do presente trabalho foi avaliar a eficácia da adição de quantidades e tamanhos de grãos de areia na fase de dispersão da análise granulométrica de solos, visando à maior acurácia na obtenção dos resultados da análise granulométrica. Os solos utilizados foram: Latossolo Vermelho eutroférrico (LVef), LatossoloVermelho acriférrico (LVwf), Latossolo Vermelho eutrófico (LVe), Argissolo Vermelho-Amarelo eutrófico (PVAe) e Nitossolo Vermelho eutroférrico (NVef). A dispersão das amostras dos solos foi realizada por meio da adição de hidróxido de sódio e agitação rotativa (60 rpm) por 16 h. O delineamento experimental adotado foi o inteiramente casualizado, com esquema fatorial 6 x 2, com três repetições. Os tratamentos foram constituídos por seis quantidades (0, 5, 10, 15, 20 e 25 g) e dois diâmetros (2,0-1,0 e 1,0-0,5 mm) de areia, adicionados na fase de dispersão da análise granulométrica dos solos. de acordo com as equações ajustadas, a adição de areia com diâmetro entre 1,0 e 0,5 mm nas quantidades de 21,4 g para LVef, 19,6 g para LVwf e 25,8 g para NVef proporciona, respectivamente para esses solos, aumentos de 50, 38 e 14,5 % nos teores de argila. No LVe e no PVAe não se justifica a adição de areia na análise granulométrica, pois esses solos não apresentaram problemas de dispersão. Os resultados demonstram que a adição de 25 g de areia, com diâmetro entre 1,0 e 0,5 mm, na fase de dispersão da análise granulométrica de solos argilosos com altos teores de óxidos de Fe e com dificuldades de dispersão, é eficiente para promover efetiva dispersão das partículas primárias do solo.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper presents the study of computational methods applied to histological texture analysis in order to identify plant species, a very difficult task due to the great similarity among some species and presence of irregularities in a given species. Experiments were performed considering 300 ×300 texture windows extracted from adaxial surface epidermis from eight species. Different texture methods were evaluated using Linear Discriminant Analysis (LDA). Results showed that methods based on complexity analysis perform a better texture discrimination, so conducting to a more accurate identification of plant species. © 2009 Springer Berlin Heidelberg.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Breast cancer is the most common cancer among women. In CAD systems, several studies have investigated the use of wavelet transform as a multiresolution analysis tool for texture analysis and could be interpreted as inputs to a classifier. In classification, polynomial classifier has been used due to the advantages of providing only one model for optimal separation of classes and to consider this as the solution of the problem. In this paper, a system is proposed for texture analysis and classification of lesions in mammographic images. Multiresolution analysis features were extracted from the region of interest of a given image. These features were computed based on three different wavelet functions, Daubechies 8, Symlet 8 and bi-orthogonal 3.7. For classification, we used the polynomial classification algorithm to define the mammogram images as normal or abnormal. We also made a comparison with other artificial intelligence algorithms (Decision Tree, SVM, K-NN). A Receiver Operating Characteristics (ROC) curve is used to evaluate the performance of the proposed system. Our system is evaluated using 360 digitized mammograms from DDSM database and the result shows that the algorithm has an area under the ROC curve Az of 0.98 ± 0.03. The performance of the polynomial classifier has proved to be better in comparison to other classification algorithms. © 2013 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Neste trabalho são apresentados os resultados de caracterização das principais argilas usadas pela indústria cerâmica vermelha regional e, também, de alguns resíduos sólidos produzidos na região de Presidente Prudente - SP. Os resultados da incorporação destes resíduos em massas cerâmicas são avaliados através do estudo de suas propriedades tecnológicas. Para a caracterização dos materiais foram utilizadas as seguintes técnicas: análise textural (concentração das frações areia, silte e argila), difratometria de raios X e análise térmica. As propriedades tecnológicas de corpos de prova cerâmicos foram avaliadas através dos seguintes parâmetros: retração linear (RL), perda de massa ao fogo (PF), massa específica aparente (MEA), porosidade aparente (PA), absorção de água (AA) e resistência mecânica à flexão (RMF). Corpos de prova, com diferentes concentrações de resíduos, foram prensados (prensa uniaxial manual) e queimados em temperaturas que variaram de 800 a 1200 oC, usando um forno tipo mufla com controle de temperatura. As argilas sedimentares foram coletadas nas margens do rio Paraná e em áreas de várzea, próximas as cerâmicas. As amostras estudadas, coletadas nos depósitos das cerâmicas, são usadas para produção de tijolos maciços, blocos furados e telhas. Quatro tipos diferentes de resíduos foram estudados: (1) lodo de estação de tratamento de água ETA, (2) torta de filtro de indústria de re-refino de óleo lubrificante, (3) pó de vidro (soda-cal) de garrafa tipo long neck descartável, e (4) cinza de bagaço de cana. Estes resíduos foram incorporados em massas cerâmicas coletadas nas indústrias... (Resumo completo, clicar acesso eletrônico abaixo)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this work were prepared with three ice cream added peppers of different varieties: Capsicum baccatum, Capsicum annuum and Capsicum frutescens. The peppers were first pasteurized and evaluated in relation to the effect of heat treatment on the ascorbic acid content. Results showed that the Capsicum annuum showed higher ascorbic acid content, but the heat treatment resulted in greater loss of biocompounds. The higher retention of ascorbic acid was observed with Capsicum frutescens, which presented lower content of biocompound, but near of the pepper Capsicum annuum. The follow attributes was performed to evaluate the acceptance of ice cream through the sensory attributes: color, aroma, flavor and texture. Analysis of variance showed no significant difference between ice cream formulations at the 5% level of significance with regard to color, aroma and texture. Regarding taste, the samples differed significantly, at 5% significance, and the most preferred was the ice cream made with pepper Capsicum frutescens.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This study proposes the application of fractal descriptors method to the discrimination of microscopy images of plant leaves. Fractal descriptors have demonstrated to be a powerful discriminative method in image analysis, mainly for the discrimination of natural objects. In fact, these descriptors express the spatial arrangement of pixels inside the texture under different scales and such arrangements are directly related to physical properties inherent to the material depicted in the image. Here, we employ the Bouligand-Minkowski descriptors. These are obtained by the dilation of a surface mapping the gray-level texture. The classification of the microscopy images is performed by the well-known Support Vector Machine (SVM) method and we compare the success rate with other literature texture analysis methods. The proposed method achieved a correctness rate of 89%, while the second best solution, the Co-occurrence descriptors, yielded only 78%. This clear advantage of fractal descriptors demonstrates the potential of such approach in the analysis of the plant microscopy images.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)