4 resultados para technique for marking insects

em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A técnica de marcação de insetos de Tadei & Mourão (1976) é, até o momento, o único método experimental que possibilita determinar a idade real de cada indivíduo na população e, conseqüentemente, determinar a estrutura etária da mesma. Para isto propomos um aprimoramento dessa técnica, utilizada aqui para determinar a estrutura etária de populações da linhagem geográfica SR do díptero forídeo Megaselia scalaris Loew, mantidas pela técnica da transferência seriada em câmaras com temperatura constante de 25 ± 1,0ºC e 20 ± 1,0ºC. O estabelecimento da estrutura etária permitiu calcular a longevidade real das moscas e detectar o efeito ambiental temperatura, sendo fator determinante neste trabalho a marcação dos insetos, pois se não o fosse, teríamos somente estimativas e, dependendo do erro cometido na estimação, o efeito do fator de interesse (temperatura) poderia não ser detectado.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In true social hymenopterans, such as many species of bees, wasps and all species of ants, the main characteristics are the overlapping of generations, the care with the offspring and the division of labor among the members of the colony. The first biological feature means that in a same moment there are groups of individuals, with variable ages, that execute different activities in the colony. In order to study the division of labor among the members of the colony, or to estimate the life span of these insects, or even to analyze any kind of behavior in non-social insects, it is necessary to know the exact age of each individual. For this reason, the insects must be identified soon after emergence. The identification of insects with numbers is an important technological improvement in behavioral studies, mainly in honeybee colonies. The aim of this scientific note is to describe an easy and cheaper technique for marking hymenopterans.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Although various biological aspects of Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae) have been examined, adult movement and dispersal of this insect pest is not well understood. Release-recapture techniques by using marked insects is a useful approach for dispersal studies; however, the marking technique should not significantly affect insect biology or behavior. Therefore, the effect of different concentrations of oil-soluble dyes (Solvent Blue 35 [C.I. 61554], Sudan Red 7B [C.I. 26050], Sudan Black B [26150], Sudan Orange G [C.I. 11920], and Sudan I 103624 [C.I. 12055]) on development, mortality, and fecundity of S. frugiperda was evaluated. Dyes were added to artificial diet used to feed larvae. Larval and pupal development and mortality, adult longevity, and female fecundity were evaluated. High concentrations (400 and 600 ppm) of all dyes led to longer larval and pupal stages. Adult life span and number of eggs were not affected by the dyes. Sudan Red 7B marked both adults and eggs very well. Solvent Blue 35 marked both adults and eggs, but the blue-marked eggs could not be distinguished from some bluish eggs laid by nonlabeled females. Adults and eggs were not adequately marked by the Sudan Black B, Sudan Orange G, and Sudan I 103624 (a yellow dye).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Understanding how and why insect numbers fluctuate through time and space has been a central theme in ecological research for more than a century. Life tables have been used to understand temporal and spatial patterns in insect numbers. In this study, we estimated cause-of-death probabilities for phytophagous insects using multiple decrement life tables and the irreplaceable mortality analytic technique. Multiple decrement life tables were created from 73 insect life tables published from 1954 to 2004. Irreplaceable mortality (the portion of mortality that cannot be replaced by another cause) from pathogens, predators, and parasitoids was 8.6 +/- 7.2, 7.8 +/- 4.9, and 6.2 +/- 1.6%, respectively. In contrast, the mean irreplaceable mortality from all non-natural enemy mortality factors (mortality from factors other than natural enemies) was 35.1 +/- 4.4%. Irreplaceable mortality from natural enemies was significantly lower compared with non-natural enemy factors. Our results may partially explain cases of unsuccessful efficacy in classical biological control, after successful establishment, by showing low irreplaceable mortality for natural enemies, including 5.2 +/- 1.6% for introduced natural enemies. We suggest that the environment (i.e., the degree of environmental stability) influences the magnitude of the irreplaceable mortality from natural enemies. Our results lead to several testable hypotheses and emphasize that it is not possible to estimate the effect of any mortality factor without considering its interaction with competing mortality factors, which has far-reaching consequences for population biology and applied ecology.