50 resultados para surface topography
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
The purpose of this study was to evaluate the influence of the oxidized surface on bone-to-implant contact (BIC%), the bone density in the threaded area (BA %), as well as the bone density outside the threaded area (BD%) in human jaws after 2 months of unloaded healing. Thirteen subjects (mean age 42.61 +/- 6.15 years) received two microimplants (2.5 mm diameter and 6 mm length) each, during conventional mandible or maxilla implant surgery. The microimplants with commercially pure titanium surfaces (machined) and oxidized surfaces served as the control and test surfaces, respectively. After 2 months, the microimplants and the surrounding tissue were removed and prepared for histomorphometric analysis. All microimplants, except two machined and one oxidized microimplant surfaces, were found to be clinically stable after the healing period. Histometric evaluation indicated that the mean BIC % was (21.71 +/- 13.11) % and (39.04 +/- 15.75) % for machined and oxidized microimplant surfaces, respectively. The BD% was higher for the oxidized surface, although there was no difference for maxilla and mandible. The oxidized surface impacted the BA% for the type-IV bone. Data suggest that the oxidized surface presented a higher bone-to-implant contact rate compared with machined surfaces under unloaded conditions, after a healing period of 2 months. (c) 2006 Wiley Periodicals, Inc.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
This study aimed to evaluate Y-TZP surface after different airborne particle abrasion protocols. Seventy-six Y-TZP ceramic blocks (5×4×4) mm3 were sintered and polished. Specimens were randomly divided into 19 groups (n=4) according to control group and 3 factors: a) protocol duration (2 and 4 s); b) particle size (30 μm, alumina coated silica particle; 45 μm, alumina particle; and 145 μm, alumina particle) and; c) pressure (1.5, 2.5 and 4.5 bar). Airborne particle abrasion was performed following a strict protocol. For qualitative and quantitative results, topography surfaces were analyzed in a digital optical profilometer (Interference Microscopic), using different roughness parameters (Ra, Rq, Rz, X-crossing, Mr1, Mr2 and Sdr) and 3D images. Surface roughness also was analyzed following the primer and silane applications on Y-TZP surfaces. One-way ANOVA revealed that treatments (application period, particle size and pressure of particle blasting) provided significant difference for all roughness parameters. The Tukey test determined that the significant differences between groups were different among roughness parameters. In qualitative analysis, the bonding agent application reduced roughness, filing the valleys in the surface. The protocols performed in this study verified that application period, particle size and pressure influenced the topographic pattern and amplitude of roughness.
Resumo:
This study evaluated the effect of different air-particle abrasion protocols on the biaxial flexural strength and structural stability of zirconia ceramics. Zirconia ceramic specimens (ISO 6872) (Lava, 3M ESPE) were obtained (N=336). The specimens (N=118, n=20 per group) were randomly assigned to one of the air-abrasion protocols: Gr1: Control (as-sintered); Gr2: 50 μm Al2O3 (2.5 bar); Gr3: 50 μm Al2O3 (3.5 bar); Gr4: 110 μm Al2O3(2.5 bar); Gr5: 110 μm Al2O3 (3.5 bar); Gr6: 30 μm SiO2 (2.5 bar) (CoJet); Gr7: 30 μm SiO2(3.5 bar); Gr8: 110 μm SiO2 (2.5 bar) (Rocatec Plus); and Gr9: 110 μm SiO2 (3.5 bar) (duration: 20 s, distance: 10 mm). While half of the specimens were tested immediately, the other half was subjected to cyclic loading in water (100,000 cycles; 50 N, 4 Hz, 37 °°C) prior to biaxial flexural strength test (ISO 6872). Phase transformation (t→m), relative amount of transformed monoclinic zirconia (FM), transformed zone depth (TZD) and surface roughness were measured. Particle type (p=0.2746), pressure (p=0.5084) and cyclic loading (p=0.1610) did not influence the flexural strength. Except for the air-abraded group with 110 μm Al2O3 at 3.5 bar, all air-abrasion protocols increased the biaxial flexural strength (MPa) (Controlnon-aged: 1030±153, Controlaged: 1138±138; Experimentalnon-aged: 1307±184-1554±124; Experimentalaged: 1308±118-1451±135) in both non-aged and aged conditions, respectively. Surface roughness (Ra) was the highest with 110 μm Al2O3(0.84 μm. FM values ranged from 0% to 27.21%, higher value for the Rocatec Plus (110 μm SiO2) and 110 μm Al2O3 groups at 3.5 bar pressure. TZD ranged between 0 and 1.43 μm, with the highest values for Rocatec Plus and 110 μm Al2O3 groups at 3.5 bar pressure. © 2013 Elsevier Ltd.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Objectives: This study evaluated the influence of air-particle abrasion protocols on the surface roughness (SR) of zirconia and the shear bond strength (SBS) of dual-polymerized resin cement to this ceramic. Materials and methods. Sintered zirconia blocks (n = 115) (Lava, 3M ESPE) were embedded in acrylic resin and polished. The specimens were divided according to the 'particle type' (Al: 110 mu m Al2O3; Si: 110 mu m SiO2) and 'pressure' factors (2.5 or 3.5 bar) (n = 3 per group): (a) Control (no air-abrasion); (b) Al2.5; (c) Si2.5; (d) Al3.5; (e) Si3.5. SR (Ra) was measured 3-times from each specimen after 20 s of air-abrasion (distance: 10 mm) using a digital optical profilometer. Surface topography was evaluated under SEM analyses. For the SBS test, 'particle type', 'pressure' and 'thermocycling' (TC) factors were considered (n = 10; n = 10 per group): Control (no air-abrasion); Al2.5; Si2.5; Al3.5; Si3.5; Control(TC); Al2.5(TC); Si2.5(TC); Al3.5(TC); Si3.5(TC). After silane application, resin cement (Panavia F2.0) was bonded and polymerized. Specimens were thermocycled (6.000 cycles, 5-55 degrees C) and subjected to SBS (1 mm/min). Data were analyzed using ANOVA, Tukey's and Dunnett tests (5%). Results. 'Particle' (p = 0.0001) and 'pressure' (p = 0.0001) factors significantly affected the SR. All protocols significantly increased the SR (Al2.5: 0.45 +/- 0.02; Si2.5: 0.39 +/- 0.01; Al3.5: 0.80 +/- 0.01; Si3.5: 0.64 +/- 0.01 mu m) compared to the control group (0.16 +/- 0.01 mu m). For SBS, only 'particle' factor significantly affected the results (p = 0.015). The SiO2 groups presented significantly higher SBS results than Al2O3 (Al2.5: 4.78 +/- 1.86; Si2.5: 7.17 +/- 2.62; Al3.5: 4.97 +/- 3.74; Si3.5: 9.14 +/- 4.09 MPa) and the control group (3.67 +/- 3.0 MPa). All TC specimens presented spontaneous debondings. SEM analysis showed that Al2O3 created damage in zirconia in the form of grooves, different from those observed with SiO2 groups. Conclusions. Air-abrasion with 110 mu m Al2O3 resulted in higher roughness, but air-abrasion protocols with SiO2 promoted better adhesion.
Resumo:
Relief Bragg gratings were recorded on the surface of Ga-Ge-S glass samples by interference of two UV laser beams at 351 nm, Scanning force microscopy was used to perform a 3D image analysis of the resulting surface topography, which shows the superposition of an imprinted grating over the base topography of the glass. An important question regarding the efficiency of the grating is to determine to what extent the base topography reduces the intended coherent scattering of the grating because of its stochastic character. To answer this question we separated both base and grating structures by Fourier filtering, examined both spatial frequency and roughness, and determined the correlation. (C) 2001 Elsevier B.V. B.V. All rights reserved.
Resumo:
Surface modifications have been applied in endosteal bone devices in order to improve the osseointegration through direct contact between neoformed bone and the implant without an intervening soft tissue layer. Surface characteristics of titanium implants have been modified by addictive methods, such as metallic titanium, titanium oxide and hydroxyapatite powder plasma spray, as well as by subtractive methods, such as acid etching, acid etching associated with sandblasting by either AlO2 or TiO2, and recently by laser ablation. Surface modification for dental and medical implants can be obtained by using laser irradiation technique where its parameters like repetition rate, pulse energy, scanning speed and fluency must be taken into accounting to the appropriate surface topography. Surfaces of commercially pure Ti (cpTi) were modified by laser Nd:YVO4 in nine different parameters configurations, all under normal atmosphere. The samples were characterized by SEM and XRD refined by Rietveld method. The crystalline phases alpha Ti, beta Ti, Ti6O, Ti3O and TiO were formed by the melting and fast cooling processes during irradiation. The resulting phases on the irradiated surface were correlated with the laser beam parameters: the aim of the present work was to control titanium oxides formations in order to improve implants osseointegration by using a laser irradiation technique which is of great importance to biomaterial devices due to being a clean and reproducible process. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
Objective: To evaluate the antimicrobial activity and surface properties of an acrylic resin containing the biocide polymer poly (2-tert-butylaminoethyl) methacrylate (PTBAEMA). Background: Several approaches have been proposed to prevent oral infections, including the incorporation of antimicrobial agents to acrylic resins. Materials and methods: Specimens of an acrylic resin (Lucitone 550) were divided into two groups: 0% (control) and 10% PTBAEMA. Antimicrobial activity was assessed by adherence assay of one of the microorganisms, Staphylococcus aureus, Streptococcus mutans and Candida albicans. Surface topography was characterised by atomic force microscopy and wettability properties determined by contact angle measurements. Results: Data of viable cells (log (CFU + 1)/ml) for S. aureus (control: 7.9 ± 0.8; 10%: 3.8 ± 3.3) and S. mutans (control: 7.5 ± 0.7; 10%: 5.1 ± 2.7) showed a significant decrease with 10% of PTBAEMA (Mann-Whitney, p < 0.05). For C. albicans (control: 6.6 ± 0.2; 10%: 6.6 ± 0.4), there was no significant difference between control and 10% of PTBAEMA (Kruskal-Wallis, p > 0.05). Incorporating 10% PTBAEMA increased surface roughness and decreased contact angles. Conclusion: Incorporating 10% PTBAEMA into acrylic resins increases wettability and roughness of acrylic resin surface; and decreases the adhesion of S. mutans and S. aureus on acrylic surface, but did not exhibit antimicrobial effect against C. albicans. © 2012 The Gerodontology Society and John Wiley & Sons A/S.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Purpose: To analyze whether immersion in sodium fluoride (NaF) solutions and/or common acidic beverages (test solutions) would affect the surface roughness or topography of lithium disilicate ceramic. Methods: 220 ceramic discs were divided into four groups, each of which was subdivided into five subgroups (n = 11). Control group discs were immersed in one of four test beverages for 4 hours daily or in artificial saliva for 21 days. Discs in the experimental groups were continuously immersed in 0.05% NaF, 0.2% NaF, or 1.23% acidulated phosphate fluoride (APF) gel for 12, 73, and 48 hours, respectively, followed by immersion in one of the four test beverages or artificial saliva. Vickers microhardness, surface roughness, scanning electron microscopy (SEM) associated with energy dispersive spectroscopy, and atomic force microscopy (AFM) assessments were made. Data were analyzed by nested analysis of variance (ANOVA) and Tukey's test (alpha = 0.05). Results: Immersion in the test solutions diminished the microhardness and increased the surface roughness of the discs. The test beverages promoted a significant reduction in the Vickers microhardness in the 0.05% and 0.2% NaF groups. The highest surface roughness results were observed in the 0.2% NaF and 1.23% APF groups, with similar findings by SEM and AFM. Acidic beverages affected the surface topography of lithium disilicate ceramic. Fluoride treatments may render the ceramic surface more susceptible to the chelating effect of acidic solutions.
Resumo:
We study the surface morphology evolution of ZnO thin films grown on glass substrates as a function of thickness by RF magnetron sputtering technique. The surface topography of the samples is measured by atomic force microscopy (AFM). All AFM images of the films are analyzed using scaling concepts. The results show that the surface morphology is initially formed by a small grains structure. The grains increase in size and height with growth time resulting in the formation of a mounds-like structure. The growth exponent, beta, and the exponent defining the evolution of the characteristic wavelength of the surface, p, amounted to beta = 0.76 +/- 0.08 and p = 0.3 +/- 0.05. From these exponents, the surface morphology is determined by the nonlocal shadowing effects, that is the dominant mechanism, due to the incident deposition particles during film growth.