33 resultados para superlattice and quantum well materials

em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work, doped AlGaAs/GaAs parabolic quantum wells (PQW) with different well widths (from 1000 angstrom up to 3000 angstrom) were investigated by means of photoluminescence (PL) measurements. In order to achieve the 2DEG inside the PQW Si delta doping is placed at both side of the well. We have observed that the thickness of this space layer plays a major rule on the characteristics of the 2DEG. It has to be thicker enough to prevent any diffusions of Si to the well and thin enough to allow electrons migration inside the well. From PL measurement, we have observed beside the intra well transitions, indirect transitions involving still trapped electron on the delta doping and holes inside the PQW. For the thinness sample, we have measured a well defined PL peak at low energy side of the GaAs bulk emission. With the increasing of the well thickness this peak intensity decreases and for the thickest sample it almost disappears. Our theoretical calculation indicated that carriers (electron and holes) are more placed at the center of the PQW. In this way, when the well thickness increases the distance between electrons on the delta doping and holes on the well also increases, it decreases the probability of occurrence of these indirect optical transitions. (C) 2012 Published by Elsevier B.V. Selection and/or peer-review under responsibility of Universidade Federal de Juiz de Fora, Brazil.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In order to obtain the quantum-mechanical properties of layered semicondutor structures (quantum well and superlattice structures, for instance), solutions of the Schrodinger equation should be obtained for arbitrary potential profiles. In this paper, it is shown that such problems may be also studied by the Element Free Galerkin Method.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The high-energy states of a shallow donor in a GaAs/Ga0.7Al0.3As multiple-quantum-well structure subjected to a magnetic field in the growth direction are studied both theoretically and experimentally. Effects due to higher confinement subbands as well as due to the electron-phonon interaction are investigated. We show that most of the peaks in the infrared photoconductivity spectrum are due to direct transitions from the ground state to the m = +/-1 magnetodonor states associated with the first subband, but transitions to the m = +/-1 states of the third subband are also apparent. The remaining photoconductivity peaks are explained by phonon-assisted impurity transitions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work reports on the preparation, structural and luminescent studies of nanosized up-converter phosphors Y2O2S:Yb(4%), Er(0.1%) and Y2O2S:Yb(4%), Tm(0.1%),both from polymeric and basic carbonate precursors. The precursors were submitted to a sulphuration process that was previously developed for oxysulfide preparation from basic carbonate. From XRD data, all phosphors presented the oxysulfide phase and the mean crystallite size estimated from the Scherrer formula in the range of 15-20 nm. Polymeric precursor leads to the smallest crystallite size independent on the doping ion. SEM and TEM results confirmed that basic carbonate leads to spherical particles with narrow size distribution and mean diameter of 150 nm, and polymeric precursor smaller spherical particles with diameter between 20 and 40 nm. Up-conversion studies under 980 nm laser excitation showed that Er-doped phosphors present strong green emission related to H-2(11/2), S-4(3/2) --> I-4(15/2) Er transitions as well as the red ones, F-4(9/2) --> I-4(15/2). Tm-doped samples show strong blue emission assigned to (1)G(4) --> H-3(6) and also the red ones, related to (1)G(4) --> F-3(4). Therefore, the sulphuration method was successfully applied to prepare nanosized and nanostructured blue and green up-converter oxysulfide phosphors starting from basic carbonate and polymeric precursors. (C) 2003 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

As far as external gravitational fields described by Newton's theory are concerned, theory shows that there is an unavoidable conflict between the universality of free fall (Galileo's equivalence principle) and quantum mechanics - a result confirmed by experiment. Is this conflict due perhaps to the use of Newton's gravity, instead of general relativity, in the analysis of the external gravitational field? The response is negative. To show this we compute the low corrections to the cross-section for the scattering of different quantum particles by an external gravitational field, treated as an external field, in the framework of Einstein's linearized gravity. To first order the cross-sections are spin-dependent; if the calculations are pushed to the next order they become dependent upon energy as well. Therefore, the Galileo's equivalence and, consequently, the classical equivalence principle, is violated in both cases. We address these issues here.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cellulose is the major constituent of most plants of interest as renewable sources of energy and is the most extensively studied form of biomass or biomass constituent. Predicting the mass loss and product yields when cellulose is subjected to increased temperature represents a fundamental problem in the thermal release of biomass energy. Unfortunately, at this time, there is no internally consistent model of cellulose pyrolysis that can organize the varied experimental data now available or provide a guide for additional experiments. Here, we present a model of direct cellulose pyrolysis using a multistage decay scheme that we first presented in the IJQC in 1984. This decay scheme can, with the help of an inverse method of assigning reaction rates, provide a reasonable account of the direct fast pyrolysis yield measurements. The model is suggestive of dissociation states of d-glucose (C6H10O5,), the fundamental cellulose monomer. The model raises the question as to whether quantum chemistry could now provide the dissociation energies for the principal breakup modes of glucose into C-1, C-2, C-3, C-4, and C-5 compounds. These calculations would help in achieving a more fundamental description of volatile generation from cellulose pyrolysis and could serve as a guide for treating hemicellulose and lignin, the other major biomass constituents. Such advances could lead to the development of a predictive science of biomass pyrolysis that would facilitate the design of liquifiers and gasifiers based upon renewable feedstocks. (C) 1998 John Wiley & Sons, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this study was to assess vascular endothelial growth factor (VEGF) expression and microvessel density (MVD) in maxillary sinus augmentation with autogenous bone and different graft materials for evaluating their angiogenic potential.Biopsies were harvested 10 months after sinus augmentation with a combination of autogenous bone and different graft materials: hydroxyapatite (HA, n = 6 patients), demineralized freeze-dried bone allograft (DFDBA, n = 5 patients), calcium phosphate (CP, n = 5 patients), Ricinus communis polymer (n = 5 patients) and control group - autogenous bone only (n = 13 patients).In all the samples, higher intensities of VEGF expression were prevalent in the newly formed bone, while lower intensities of VEGF expression were predominant in the areas of mature bone. The highest intensity of VEGF expression in the newly formed bone was expressed by HA (P < 0.001) and CP in relation to control (P < 0.01) groups. The lowest intensities of VEGF expression in newly formed bone were shown by DFDBA and polymer groups (P < 0.05). When comparing the different grafting materials, higher MVD were found in the newly formed bone around control, HA and CP (P < 0.001).Various graft materials could be successfully used for sinus floor augmentation; however, the interactions between bone formation and angiogenesis remain to be fully characterized.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

There is a remarkable connection between the number of quantum states of conformal theories and the sequence of dimensions of Lie algebras. In this paper, we explore this connection by computing the asymptotic expansion of the elliptic genus and the microscopic entropy of black holes associated with (supersymmetric) sigma models. The new features of these results are the appearance of correct prefactors in the state density expansion and in the coefficient of the logarithmic correction to the entropy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Motion of a nonrelativistic particle on a cone with a magnetic flux running through the cone axis (a flux cone) is studied. It is expressed as the motion of a particle moving on the Euclidean plane under the action of a velocity-dependent force. The probability fluid (quantum flow) associated with a particular stationary state is studied close to the singularity, demonstrating nontrivial Aharonov-Bohm effects. For example, it is shown that, near the singularity, quantum flow departs from classical flow. In the context of the hydrodynamical approach to quantum mechanics, quantum potential due to the conical singularity is determined, and the way it affects quantum flow is analyzed. It is shown that the winding number of classical orbits plays a role in the description of the quantum Bow. The connectivity of the configuration space is also discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

By means of a mod(N)-invariant operator basis, s-parametrized phase-space functions associated with bounded operators in a finite-dimensional Hilbert space are introduced in the context of the extended Cahill-Glauber formalism, and their properties are discussed in details. The discrete Glauber-Sudarshan, Wigner, and Husimi functions emerge from this formalism as specific cases of s-parametrized phase-space functions where, in particular, a hierarchical process among them is promptly established. In addition, a phase-space description of quantum tomography and quantum teleportation is presented and new results are obtained.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A non-integrable phase-factor global approach to gravitation is developed by using the similarity of teleparallel gravity to electromagnetism. The phase shifts of both the COW and the gravitational Aharonov-Bohm effects are obtained. It is then shown, by considering a simple slit experiment, that in the classical limit the global approach yields the same result as the gravitational Lorentz force equation of teleparallel gravity. It represents, therefore, the quantum mechanical version of the classical description provided by the gravitational Lorentz force equation. As teleparallel gravity can be formulated independently of the equivalence principle, it will consequently require no generalization of this principle at the quantum level.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In certain Mott-insulating dimerized antiferromagnets, triplet excitations of the paramagnetic phase display both three-particle and four-particle interactions. When such a magnet undergoes a quantum phase transition into a magnetically ordered state, the three-particle interaction becomes part of the critical theory provided that the lattice ordering wave vector is zero. One microscopic example is the staggered-dimer antiferromagnet on the square lattice, for which deviations from O(3) universality have been reported in numerical studies. Using both symmetry arguments and microscopic calculations, we show that a nontrivial cubic term arises in the relevant order-parameter quantum field theory, and we assess its consequences using a combination of analytical and numerical methods. We also present finite-temperature quantum Monte Carlo data for the staggered-dimer antiferromagnet which complement recently published results. The data can be consistently interpreted in terms of critical exponents identical to that of the standard O(3) universality class, but with anomalously large corrections to scaling. We argue that the cubic interaction of critical triplons, although irrelevant in two spatial dimensions, is responsible for the leading corrections to scaling due to its small scaling dimension.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Complex electro-optical analysis is a very useful approach to separate different kinetic processes that occur during ionic insertion reactions in electrochromic oxide materials. In this paper, we use this type of combined technique to investigate ionic and optical changes in different oxide host systems, i.e., in two oxide hosts, specifically WO3 and Nb2O5. A comparison of their electro-optical responses revealed the presence of an ionic trapping contribution to the kinetics of the coloring sites, which was named here as coloring ionic trapping state. As expected, this coloring trapping process is slower in Nb2O5 since the reduction potential of Nb2O5 is more negative (more energy is needed for a higher degree of coloration). A phenomenological solid-state model that encompasses homogeneous charge transfer and valence trapping was proposed to explain the coloring ionic trapping process. Basically the model is able to explain how ionic dynamics at low frequency region, i.e., the slower kinetic step, controls the coloring kinetics, i.e., how it is capable to regulate the coloring rates.Optical transient analyses demonstrated the possibility of the presence of more than one coloring ionic trap, indicating the complexity of the processes involved in coloration phenomenon in metal oxide host systems. (C) 2008 Published by Elsevier Ltd.