74 resultados para stochastic cooling
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Ionospheric scintillations are caused by time-varying electron density irregularities in the ionosphere, occurring more often at equatorial and high latitudes. This paper focuses exclusively on experiments undertaken in Europe, at geographic latitudes between similar to 50 degrees N and similar to 80 degrees N, where a network of GPS receivers capable of monitoring Total Electron Content and ionospheric scintillation parameters was deployed. The widely used ionospheric scintillation indices S4 and sigma(phi) represent a practical measure of the intensity of amplitude and phase scintillation affecting GNSS receivers. However, they do not provide sufficient information regarding the actual tracking errors that degrade GNSS receiver performance. Suitable receiver tracking models, sensitive to ionospheric scintillation, allow the computation of the variance of the output error of the receiver PLL (Phase Locked Loop) and DLL (Delay Locked Loop), which expresses the quality of the range measurements used by the receiver to calculate user position. The ability of such models of incorporating phase and amplitude scintillation effects into the variance of these tracking errors underpins our proposed method of applying relative weights to measurements from different satellites. That gives the least squares stochastic model used for position computation a more realistic representation, vis-a-vis the otherwise 'equal weights' model. For pseudorange processing, relative weights were computed, so that a 'scintillation-mitigated' solution could be performed and compared to the (non-mitigated) 'equal weights' solution. An improvement between 17 and 38% in height accuracy was achieved when an epoch by epoch differential solution was computed over baselines ranging from 1 to 750 km. The method was then compared with alternative approaches that can be used to improve the least squares stochastic model such as weighting according to satellite elevation angle and by the inverse of the square of the standard deviation of the code/carrier divergence (sigma CCDiv). The influence of multipath effects on the proposed mitigation approach is also discussed. With the use of high rate scintillation data in addition to the scintillation indices a carrier phase based mitigated solution was also implemented and compared with the conventional solution. During a period of occurrence of high phase scintillation it was observed that problems related to ambiguity resolution can be reduced by the use of the proposed mitigated solution.
Stochastic stability for Markovian jump linear systems associated with a finite number of jump times
Resumo:
This paper deals with a stochastic stability concept for discrete-time Markovian jump linear systems. The random jump parameter is associated to changes between the system operation modes due to failures or repairs, which can be well described by an underlying finite-state Markov chain. In the model studied, a fixed number of failures or repairs is allowed, after which, the system is brought to a halt for maintenance or for replacement. The usual concepts of stochastic stability are related to pure infinite horizon problems, and are not appropriate in this scenario. A new stability concept is introduced, named stochastic tau-stability that is tailored to the present setting. Necessary and sufficient conditions to ensure the stochastic tau-stability are provided, and the almost sure stability concept associated with this class of processes is also addressed. The paper also develops equivalences among second order concepts that parallels the results for infinite horizon problems. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
The purpose of this work is to explain the concept of cutting fluids reasonable usage through the fluid minimum quantity in grinding processes. on that purpose, the development of a new nozzle and an own and adequate methodology should be required in order to obtain good results and compare them to the conventional methods. The analysis of the grinding wheel/cutting fluid performance was accomplished from the following input parameters: flow rate variation by nozzle diameter changes (three diameters values: 3mm, 4mm and 5mm), besides the conventional round nozzle already within the machine. Integral oil and a synthetic emulsion were used as cutting fluids and a conventional grinding wheel was employed. The workpieces were made of steel VC 131, tempered and quenched with 60HRc. Thus, as the flow rate and the nozzle diameter changes, keeping steady fluid jet velocity (equal to cutting velocity), attempted to find the best machining conditions, with the purpose to obtain a decrease on the cutting fluid volume, taking into consideration the analysis of the process output variables such as cutting strength, cutting specific energy, grinding wheel wear and surface roughness. It was verified that the 3mm diameter optimized nozzle and the integral oil, in general, was the best combination among all proposed.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This article presents a cooling system for cutting tool in turning based in a toolholder with cooling fluid flowing inside its body being that this fluid must necessarily be able to phase change due to heat generated from machining processes. In this way, the fluid evaporates just under the cutting tool allowing a heat transfer more efficient than if were used a fluid without phase change once the latent heat of evaporation is beneficial for removal heat. Following, the cooling fluid evaporated passes through a condenser located out of the toolholder where it is condensated and returns to the toolholder again and a new cycle is started. In this study, the R-123, a hydrochlorofluorocarbon (HCFC) fluid, was selected for the turning of a Cr-Ni-Nb-Mn-N austenitic steel of hard machinability. The machining tests were carried out under three different machining conditions: dry machining, external cutting fluid (conventional method), and with the toolholder proposed. As result, the developed system allows a surface roughness up to 10% better than dry machining and a tool life close to the conventional method, but 32% superior to dry machining; moreover, there are environmental and economics advantages once the cooling fluid is maintained in a loop circuit.
Resumo:
Bi-based (BPSCCO) superconductors have been extensively studied due to their interesting superconducting properties, especially those that present high transition temperature (T-c). In this work, superconductors of the BPSCCO system were prepared from rapid cooling process and studied under its structural and magnetic properties. Sample as-prepared shows an amorphous behavior, which is converted progressively into 2223 phase. This process permits the control of Pb or Bi loss and the crystallization of the desired phase using several heat annealing processes. The 2201 and 2212 phases were also observed as intermediate phases, before the crystallization of the 2223 phase. The superconductor obtained in this work presented a T-c around 77-K. (C) 2005 Springer Science + Business Media, Inc.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The aim of this study was to investigate the impact of a 24-h cooling period prior to freezing on domestic cat epididymal sperm viability. Fifteen tomcats were submitted to routine orchiectomy and sperm samples were retrieved from both epididymides in a Tris-glucose-20% egg yolk extender. For each tomcat, the diluted sperm was split into two equal volumes and cooled to 5 degrees C at a rate of 0.5 degrees C/min; one sample for 60 min (control) and the other for 24 h (cooled). After the cooling period, samples from both groups were frozen using an identical freezing protocol. Sperm samples were evaluated in three different periods: immediately after harvesting, after cooling at 5 degrees C for 24 h (cooled group) and after freezing thawing of control and cooled groups. Evaluations consisted of sperm motility and progressive status, sperm morphology and plasma membrane integrity (PMI) using two fluorescent probes. After cooling for 24 h, a decrease (p < 0.05) in sperm motility, progressive status and PMI was observed when compared to sperm samples immediately after collection. Comparing the results obtained after thawing, no difference (p < 0.05) was found regarding sperm motility, progressive status, PMI and sperm morphology between control and cooled groups. The results from the present study show that cooling cat epididymal spermatozoa at 5 degrees C for 24 h prior to freezing does not lead to major damage of spermatozoa impairing the freeze-thaw process.
Resumo:
In this study we explored the stochastic population dynamics of three exotic blowfly species, Chrysomya albiceps, Chrysomya megacephala and Chrysomya putoria, and two native species, Cochliomyia macellaria and Lucilia eximia, by combining a density-dependent growth model with a two-patch metapopulation model. Stochastic fecundity, survival and migration were investigated by permitting random variations between predetermined demographic boundary values based on experimental data. Lucilia eximia and Chrysomya albiceps were the species most susceptible to the risk of local extinction. Cochliomyia macellaria, C. megacephala and C. putoria exhibited lower risks of extinction when compared to the other species. The simultaneous analysis of stochastic fecundity and survival revealed an increase in the extinction risk for all species. When stochastic fecundity, survival and migration were simulated together, the coupled populations were synchronized in the five species. These results are discussed, emphasizing biological invasion and interspecific interaction dynamics.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)