70 resultados para spectral approximation
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
A semi-classical approach is used to obtain Lorentz covariant expressions for the form factors between the kink states of a quantum field theory with degenerate vacua. Implemented on a cylinder geometry it provides an estimate of the spectral representation of correlation functions in a finite volume. Illustrative examples of the applicability of the method are provided by the sine-Gordon and the broken phi(4) theories in 1 + 1 dimensions. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
Many efforts are currently oriented toward extracting more information from ocean color than the chlorophyll a concentration. Among biological parameters potentially accessible from space, estimates of phytoplankton cell size and light absorption by colored detrital matter (CDM) would lead to an indirect assessment of major components of the organic carbon pool in the ocean, which would benefit oceanic carbon budget models. We present here 2 procedures to retrieve simultaneously from ocean color measurements in a limited number of bands, magnitudes, and spectral shapes for both light absorption by CDM and phytoplankton, along with a size parameter for phytoplankton. The performance of the 2 procedures was evaluated using different data sets that correspond to increasing uncertainties: ( 1) measured absorption coefficients of phytoplankton, particulate detritus, and colored dissolved organic matter ( CDOM) and measured chlorophyll a concentrations and ( 2) SeaWiFS upwelling radiance measurements and chlorophyll a concentrations estimated from global algorithms. In situ data were acquired during 3 cruises, differing by their relative proportions in CDM and phytoplankton, over a continental shelf off Brazil. No local information was introduced in either procedure, to make them more generally applicable. Over the study area, the absorption coefficient of CDM at 443 nm was retrieved from SeaWiFS radiances with a relative root mean square error (RMSE) of 33%, and phytoplankton light absorption coefficients in SeaWiFS bands ( from 412 to 510 nm) were retrieved with RMSEs between 28% and 33%. These results are comparable to or better than those obtained by 3 published models. In addition, a size parameter of phytoplankton and the spectral slope of CDM absorption were retrieved with RMSEs of 17% and 22%, respectively. If these methods are applied at a regional scale, the performances could be substantially improved by locally tuning some empirical relationships.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
A method of determining spectral parameters p (slope of the phase PSD) and T (phase PSD at 1 Hz) and hence tracking error variance in a GPS receiver PLL from just amplitude and phase scintillation indices and an estimated value of the Fresnel frequency has been previously presented. Here this method is validated using 50 Hz GPS phase and amplitude data from high latitude receivers in northern Norway and Svalbard. This has been done both using (1) a Fresnel frequency estimated using the amplitude PSD (in order to check the accuracy of the method) and (2) a constant assumed value of Fresnel frequency for the data set, convenient for the situation when contemporaneous phase PSDs are not available. Both of the spectral parameters (p, T) calculated using this method are in quite good agreement with those obtained by direct measurements of the phase spectrum as are tracking jitter variances determined for GPS receiver PLLs using these values. For the Svalbard data set, a significant difference in the scintillation level observed on the paths from different satellites received simultaneously was noted. Then, it is shown that the accuracy of relative GPS positioning can be improved by use of the tracking jitter variance in weighting the measurements from each satellite used in the positioning estimation. This has significant advantages for scintillation mitigation, particularly since the method can be accomplished utilizing only time domain measurements thus obviating the need for the phase PSDs in order to extract the spectral parameters required for tracking jitter determination.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This study describes the synthesis, IR, (1)H, and (13)C{(1)H} NMR spectroscopic as well the thermal characterization of the new palladium(II) pyrazolyl complexes [PdCl(2)(HmPz)(2)] 1, [PdBr(2)(HmPz)(2)] 2, [PdI(2)(HmPz)(2)] 3, [Pd(SCN)(2)(HmPz)(2)] 4 {HmPz = 4-methylpyrazole}. The residues of the thermal decomposition were identified as Pd(0) by X-ray powder diffraction. From the initial decomposition temperatures, the thermal stability of the complexes can be ordered in the sequence: 1 > 2 > 4 a parts per thousand 3. The cytotoxic activities of the complexes and the ligand were investigated against two murine cancer cell lines: mammary adenocarcinoma (LM3) and lung adenocarcinoma (LP07) and compared to cisplatin under the same experimental conditions.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The pyrazole ligand 3,5-dimethyl-4-iodopyrazole (HdmIPz) has been used to obtain a series of palladium(II) complexes (1-4) of the type [PdX(2)(HdmIPz)(2)] {X = Cl(-) (1); Br(-) (2); I(-) (3); SCN(-) (4)}. All compounds have been isolated, purified, and characterized by means of elemental analysis, IR spectroscopy, (1)H and (13)C{(1)H}-NMR experiments, differential thermal analysis (DTA), and thermogravimetry (TG). The TG/DTA curves showed that the compounds released ligands in the temperature range 137-605 A degrees C, yielding metallic palladium as final residue. The complexes and the ligand together with cisplatin have been tested in vitro by MTT assay for their cytotoxicity against two murine cancer cell lines: mammary adenocarcinoma (LM3) and lung adenocarcinoma (LP07).
Resumo:
Neural networks and wavelet transform have been recently seen as attractive tools for developing eficient solutions for many real world problems in function approximation. Function approximation is a very important task in environments where computation has to be based on extracting information from data samples in real world processes. So, mathematical model is a very important tool to guarantee the development of the neural network area. In this article we will introduce one series of mathematical demonstrations that guarantee the wavelets properties for the PPS functions. As application, we will show the use of PPS-wavelets in pattern recognition problems of handwritten digit through function approximation techniques.
Resumo:
This work presents an application for the plate analysis formulation by BEM where 3 boundary equations are used, written for the transverse displacement w and the normal and tangential derivatives partial derivativew/partial derivativen and partial derivativew/partial derivatives. In this extension, the transverse displacement w is approximated by a cubic polynomial and, as a consequence, partial derivativew/partial derivatives has a quadratic approximation. This alternative BEM formulation improves the analysis of thin plates, when compared to the formulation using the linear approximation for the displacements, mainly in the obtaining of the bending moments at the boundary of the plate. The implementation of this proposal to the computational codes is simple. (C) 2004 Published by Elsevier Ltd.
Resumo:
The accurate identification of the nitrogen content in crop plants is extremely important since it involves economic aspects and environmental impacts. Several experimental tests have been carried out to obtain characteristics and parameters associated with the health of plants and its growing. The nitrogen content identification involves a lot of nonlinear parametes and complexes mathematical models. This paper describes a novel approach for identification of nitrogen content thought spectral reflectance of plant leaves using artificial neural networks. The network acts as identifier of relationships among pH of soil, fertilizer treatment, spectral reflectance and nitrogen content in the plants. So, nitrogen content can be estimated and generalized from an input parameter set. This approach can be form the basis for development of an accurate real time nitrogen applicator.
Resumo:
The aim of the present study was to assess the spectral behavior of the erector spinae muscle during isometric contractions performed before and after a dynamic manual load-lifting test carried out by the trunk in order to determine the capacity of muscle to perform this task. Nine healthy female students participated in the experiment. Their average age, height, and body mass (± SD) were 20 ± 1 years, 1.6 ± 0.03 m, and 53 ± 4 kg, respectively. The development of muscle fatigue was assessed by spectral analysis (median frequency) and root mean square with time. The test consisted of repeated bending movements from the trunk, starting from a 45º angle of flexion, with the application of approximately 15, 25 and 50% of maximum individual load, to the stand up position. The protocol used proved to be more reliable with loads exceeding 50% of the maximum for the identification of muscle fatigue by electromyography as a function of time. Most of the volunteers showed an increase in root mean square versus time on both the right (N = 7) and the left (N = 6) side, indicating a tendency to become fatigued. With respect to the changes in median frequency of the electromyographic signal, the loads used in this study had no significant effect on either the right or the left side of the erector spinae muscle at this frequency, suggesting that a higher amount and percentage of loads would produce more substantial results in the study of isotonic contractions.
Resumo:
We establish the bridge between the commonly used Nabetani-Ogaito-Sato-Kishimoto (NOSK) formula for the asymmetry parameter a(Lambda) in the Lambda p -> np emission of polarized hypernuclei, and the shell-model (SM) formalism for finite hypernuclei. We demonstrate that the s-wave approximation leads to a SM formula for a(Lambda) that is as simple as the NOSK one and that reproduces the exact results for (5)(Lambda)He and (12)(Lambda)C better than initially expected. The simplicity achieved here is indeed remarkable. The new formalism makes the theoretical evaluation of a(Lambda) more transparent and explains clearly why the one-meson exchange model is unable to account for the experimental data of (5)(Lambda)He.