9 resultados para soziale Norm
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Linear Matrix Inequalities (LMIs) is a powerful too] that has been used in many areas ranging from control engineering to system identification and structural design. There are many factors that make LMI appealing. One is the fact that a lot of design specifications and constrains can be formulated as LMIs [1]. Once formulated in terms of LMIs a problem can be solved efficiently by convex optimization algorithms. The basic idea of the LMI method is to formulate a given problem as an optimization problem with linear objective function and linear matrix inequalities constrains. An intelligent structure involves distributed sensors and actuators and a control law to apply localized actions, in order to minimize or reduce the response at selected conditions. The objective of this work is to implement techniques of control based on LMIs applied to smart structures.
Resumo:
This paper addresses the problem of model reduction for uncertain discrete-time systems with convex bounded (polytope type) uncertainty. A reduced order precisely known model is obtained in such a way that the H2 and/or the H∞ guaranteed norm of the error between the original (uncertain) system and the reduced one is minimized. The optimization problems are formulated in terms of coupled (non-convex) LMIs - Linear Matrix Inequalities, being solved through iterative algorithms. Examples illustrate the results.
Resumo:
A branch and bound algorithm is proposed to solve the H2-norm model reduction problem for continuous-time linear systems, with conditions assuring convergence to the global optimum in finite time. The lower and upper bounds used in the optimization procedure are obtained through Linear Matrix Inequalities formulations. Examples illustrate the results.
Resumo:
In this work are presented the values found with the experimental testing, in the semi-elliptic leaf spring, utilizing 24 strain gages, distributed in five leaves of springs; these values have been compared to the calculated values found with the application of Norm SAE J788 (1982). The results showed discrepancy between the values measured and calculated and that the Norm is not indicated to determine the actuating stress in any point of any leaf of the leaf spring, but due to its simplicity and quickness of the process it presents good precision for the pre-development of the product. Copyright © 2002 Society of Automotive Engineers, Inc.
Resumo:
Nowadays there is great interest in damage identification using non destructive tests. Predictive maintenance is one of the most important techniques that are based on analysis of vibrations and it consists basically of monitoring the condition of structures or machines. A complete procedure should be able to detect the damage, to foresee the probable time of occurrence and to diagnosis the type of fault in order to plan the maintenance operation in a convenient form and occasion. In practical problems, it is frequent the necessity of getting the solution of non linear equations. These processes have been studied for a long time due to its great utility. Among the methods, there are different approaches, as for instance numerical methods (classic), intelligent methods (artificial neural networks), evolutions methods (genetic algorithms), and others. The characterization of damages, for better agreement, can be classified by levels. A new one uses seven levels of classification: detect the existence of the damage; detect and locate the damage; detect, locate and quantify the damages; predict the equipment's working life; auto-diagnoses; control for auto structural repair; and system of simultaneous control and monitoring. The neural networks are computational models or systems for information processing that, in a general way, can be thought as a device black box that accepts an input and produces an output. Artificial neural nets (ANN) are based on the biological neural nets and possess habilities for identification of functions and classification of standards. In this paper a methodology for structural damages location is presented. This procedure can be divided on two phases. The first one uses norms of systems to localize the damage positions. The second one uses ANN to quantify the severity of the damage. The paper concludes with a numerical application in a beam like structure with five cases of structural damages with different levels of severities. The results show the applicability of the presented methodology. A great advantage is the possibility of to apply this approach for identification of simultaneous damages.
Resumo:
A branch and bound algorithm is proposed to solve the [image omitted]-norm model reduction problem for continuous and discrete-time linear systems, with convergence to the global optimum in a finite time. The lower and upper bounds in the optimization procedure are described by linear matrix inequalities (LMI). Also proposed are two methods with which to reduce the convergence time of the branch and bound algorithm: the first one uses the Hankel singular values as a sufficient condition to stop the algorithm, providing to the method a fast convergence to the global optimum. The second one assumes that the reduced model is in the controllable or observable canonical form. The [image omitted]-norm of the error between the original model and the reduced model is considered. Examples illustrate the application of the proposed method.
Resumo:
Reaction norm models have been widely used to study genotype by environment interaction (G × E) in animal breeding. The objective of this study was to describe environmental sensitivity across first lactation in Brazilian Holstein cows using a reaction norm approach. A total of 50,168 individual monthly test day (TD) milk yields (10 test days) from 7476 complete first lactations of Holstein cattle were analyzed. The statistical models for all traits (10 TDs and for 305-day milk yield) included the fixed effects of contemporary group, age of cow (linear and quadratic effects), and days in milk (linear effect), except for 305-day milk yield. A hierarchical reaction norm model (HRNM) based on the unknown covariate was used. The present study showed the presence of G × E in milk yield across first lactation of Holstein cows. The variation in the heritability estimates implies differences in the response to selection depending on the environment where the animals of this population are evaluated. In the average environment, the heritabilities for all traits were rather similar, in range from 0.02 to 0.63. The scaling effect of G × E predominated throughout most of lactation. Particularly during the first 2 months of lactation, G × E caused reranking of breeding values. It is therefore important to include the environmental sensitivity of animals according to the phase of lactation in the genetic evaluations of Holstein cattle in tropical environments.