21 resultados para solve
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Economic dispatch (ED) problems have recently been solved by artificial neural network approaches. Systems based on artificial neural networks have high computational rates due to the use of a massive number of simple processing elements and the high degree of connectivity between these elements. The ability of neural networks to realize some complex non-linear function makes them attractive for system optimization. All ED models solved by neural approaches described in the literature fail to represent the transmission system. Therefore, such procedures may calculate dispatch policies, which do not take into account important active power constraints. Another drawback pointed out in the literature is that some of the neural approaches fail to converge efficiently toward feasible equilibrium points. A modified Hopfield approach designed to solve ED problems with transmission system representation is presented in this paper. The transmission system is represented through linear load flow equations and constraints on active power flows. The internal parameters of such modified Hopfield networks are computed using the valid-subspace technique. These parameters guarantee the network convergence to feasible equilibrium points, which represent the solution for the ED problem. Simulation results and a sensitivity analysis involving IEEE 14-bus test system are presented to illustrate efficiency of the proposed approach. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
Assigning cells to switches in a cellular mobile network is known as an NP-hard optimization problem. This means that the alternative for the solution of this type of problem is the use of heuristic methods, because they allow the discovery of a good solution in a very satisfactory computational time. This paper proposes a Beam Search method to solve the problem of assignment cell in cellular mobile networks. Some modifications in this algorithm are also presented, which allows its parallel application. Computational results obtained from several tests confirm the effectiveness of this approach and provide good solutions for large scale problems.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
This paper proposes a new approach and coding scheme for solving economic dispatch problems (ED) in power systems through an effortless hybrid method (EHM). This novel coding scheme can effectively prevent futile searching and also prevents obtaining infeasible solutions through the application of stochastic search methods, consequently dramatically improves search efficiency and solution quality. The dominant constraint of an economic dispatch problem is power balance. The operational constraints, such as generation limitations, ramp rate limits, prohibited operating zones (POZ), network loss are considered for practical operation. Firstly, in the EHM procedure, the output of generator is obtained with a lambda iteration method and without considering POZ and later in a genetic based algorithm this constraint is satisfied. To demonstrate its efficiency, feasibility and fastness, the EHM algorithm was applied to solve constrained ED problems of power systems with 6 and 15 units. The simulation results obtained from the EHM were compared to those achieved from previous literature in terms of solution quality and computational efficiency. Results reveal that the superiority of this method in both aspects of financial and CPU time. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
In this letter, a genetic algorithm (GA) is applied to solve - the static and multistage transmission expansion planning (TEP) problem. The characteristics of the proposed GA to solve the TEP problem are presented. Results using some known systems show that the proposed GA solves a smaller number of linear programming problems in order to find the optimal solutions and obtains a better solution for the multistage TEP problem.
Resumo:
Economic Dispatch (ED) problems have recently been solved by artificial neural networks approaches. In most of these dispatch models, the cost function must be linear or quadratic. Therefore, functions that have several minimum points represent a problem to the simulation since these approaches have not accepted nonlinear cost function. Another drawback pointed out in the literature is that some of these neural approaches fail to converge efficiently towards feasible equilibrium points. This paper discusses the application of a modified Hopfield architecture for solving ED problems defined by nonlinear cost function. The internal parameters of the neural network adopted here are computed using the valid-subspace technique, which guarantees convergence to equilibrium points that represent a solution for the ED problem. Simulation results and a comparative analysis involving a 3-bus test system are presented to illustrate efficiency of the proposed approach.
Resumo:
The multilayer perceptron network has become one of the most used in the solution of a wide variety of problems. The training process is based on the supervised method where the inputs are presented to the neural network and the output is compared with a desired value. However, the algorithm presents convergence problems when the desired output of the network has small slope in the discrete time samples or the output is a quasi-constant value. The proposal of this paper is presenting an alternative approach to solve this convergence problem with a pre-conditioning method of the desired output data set before the training process and a post-conditioning when the generalization results are obtained. Simulations results are presented in order to validate the proposed approach.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
In this paper, a method for solving the short term transmission network expansion planning problem is presented. This is a very complex mixed integer nonlinear programming problem that presents a combinatorial explosion in the search space. In order to And a solution of excellent quality for this problem, a constructive heuristic algorithm is presented in this paper. In each step of the algorithm, a sensitivity index is used to add a circuit (transmission line or transformer) or a capacitor bank (fixed or variable) to the system. This sensitivity index is obtained solving the problem considering the numbers of circuits and capacitors banks to be added (relaxed problem), as continuous variables. The relaxed problem is a large and complex nonlinear programming and was solved through a higher order interior point method. The paper shows results of several tests that were performed using three well-known electric energy systems in order to show the possibility and the advantages of using the AC model. ©2007 IEEE.
Resumo:
In this paper, the short term transmission network expansion planning (STTNEP) is solved through a specialized genetic algorithm (SGA). A complete AC model of the transmission network is used, which permits the formulation of an integrated power system transmission network expansion planning problem (real and reactive power planning). The characteristics of the proposed SGA to solve the STTNEP problem are detailed and an interior point method is employed to solve nonlinear programming problems during the solution steps of the SGA. Results of tests carried out with two electrical energy systems show the capabilities of the SGA and also the viability of using the AC model to solve the STTNEP problem. © 2009 IEEE.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
This paper proposes a method to determine the output of all online units with minimum total cost when the amount of emission is reasonable. A joint economic and emission dispatch is proposed in order to get a significant compromise between costs and emission such that real power supply-demand equilibrium is satisfied. In order to have a meaningful compromise between costs and emission in the problem formulation, two variables are used, weighting factor and price penalty factor. A case study comprising of a 3-unit power system is employed, where various demand is used. Results for the test system indicate the fastness and effectiveness of proposed method. © 2011 IEEE.