17 resultados para soil reaction
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
Conduziram-se dois experimentos em laboratório avaliar o efeito da palha da cana- de-açúcar na acidez do solo. A palha da cana foi adicionada nas doses de 0, 20, 40, e 76 g kg-1 na superfície de um latossolo roxo distrófico acondicionado em colunas de PVC. O solo foi incubado a capacidade de campo durante 0, 7, 14, 45, e 90 dias. Após cada incubação, o solo das colunas foram subdividido e amostrado nas seguintes frações 0-5, 5-10, 10-15, 15-20, e 20-25 cm. Com o aumento da dose da palha da cana verificou-se aumento do pH CaCl2 do solo e decréscimo do alumínio trocável até a camada de 15 cm de solo da coluna de PVC. A contribuição de compostos orgânicos para a destoxificação do Al aumentou com o acréscimo das doses da palha da cana. O crescimento da raiz das plantas trigo usadas como planta indicadora aumentou com o acréscimo das doses da palha de cana. O máximo de crescimento da raiz foi até a camada de 15 cm de solo depois de oito dias para a maior dose de palha da cana-de-açúcar.
Resumo:
O presente trabalho objetivou estudar a reatividade de uma escória de siderurgia de aciaria, em diferentes frações granulométricas, aplicada em uma amostra de um Latossolo Vermelho distrófico, ácido, em condições de laboratório. Utilizou-se um fatorial 4 x 3 + 2 com quatro repetições, sendo quatro granulometrias (material retido entre as peneiras ABNT 5-10; 10-20; 20-50 e < 50), três doses de escória, correspondentes a 0,00, 5,04 e 10,08 t ha-1, ou seja, 0,00, 1,01 e 2,02 g por copo com 0,40 dm³ de solo e duas testemunhas (escória e calcário dolomítico, na dose correspondente a V = 70 %, ou seja, 1,01 e 0,60 g por copo, respectivamente). Para definir as doses, adotou-se o método da saturação por bases, considerando-se o valor do PRNT da escória e do calcário, obtidos na granulometria correspondente. O solo foi mantido na capacidade de campo e incubado durante os períodos de três, seis e nove meses. As frações granulométricas da escória influiram diferentemente na acidez do solo. A fração retida entre as peneiras ABNT 5-10 mostrou-se ineficiente, enquanto a fração que passa pela peneira ABNT 50 foi a que conferiu o maior efeito na neutralização da acidez. A reatividade das partículas da escória retidas nas peneiras intermediárias, ABNT 10-20 e 20-50, foi proporcional aos valores vigentes na legislação brasileira para calcários. Portanto, a taxa de reatividade obtida para a escória foi de: ABNT nº 5-10 = 0 %; 10-20 = 22 %; 20-50 = 58 % e < 50 = 100 %.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The degradation of DDT [1,1-bis(4-chlorophenyl)-2,2,2-trichloroethane] and DDE [2,2-bis(4-chlorophenyl)-1,1-dichloroethylene] in highly and long-term contaminated soil using Fenton reaction in a slurry system is studied in this work. The influence of the amount of soluble iron added to the slurry versus the mineral iron originally present in the soil, and the influence of H2O2 concentration on the degradation process are evaluated. The main iron mineral species encountered in the soil, hematite (Fe2O3), did not show catalytic activity in the decomposition of H2O2, resulting in low degradation of DDT (24%) and DDE (4%) after 6 h. The addition of soluble iron (3.0 mmol L-1) improves the reaction reaching 53% degradation of DDT and 46% of DDE. The increase in iron concentration from 3.0 to 24 mmol L-1 improves slightly the degradation rate of the contaminants. However, similar degradation percentages were obtained after 24 h of reaction. It was observed that low concentrations of H2O2 were sufficient to degrade around 50% of the DDT and DDE present in the soil, while higher degradation percentages were achieved only with high amounts of this reagent (1.1 mol L-1). (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Tillage stimulates soil carbon (C) losses by increasing aeration, changing temperature and moisture conditions, and thus favoring microbial decomposition. In addition, soil aggregate disruption by tillage exposes once protected organic matter to decomposition. We propose a model to explain carbon dioxide (CO2) emission after tillage as a function of the no-till emission plus a correction due to the tillage disturbance. The model assumes that C in the readily decomposable organic matter follows a first-order reaction kinetics equation as: dC(sail)(t)/dt = -kC(soil)(t) and that soil C-CO2 emission is proportional to the C decay rate in soil, where C-soil(t) is the available labile soil C (g m(-2)) at any time (t). Emissions are modeled in terms soil C available to decomposition in the tilled and non-tilled plots, and a relationship is derived between no-till (F-NT) and tilled (F-Gamma) fluxes, which is: F-T = a1F(NT)e(-a2t), where t is time after tillage. Predicted and observed fluxes showed good agreement based on determination coefficient (R-2), index of agreement and model efficiency, with R-2 as high as 0.97. The two parameters included in the model are related to the difference between the decay constant (k factor) of tilled and no-till plots (a(2)) and also to the amount of labile carbon added to the readily decomposable soil organic matter due to tillage (a,). These two parameters were estimated in the model ranging from 1.27 and 2.60 (a(1)) and - 1.52 x 10(-2) and 2.2 x 10(-2) day(-1) (a(2)). The advantage is that temporal variability of tillage-induced emissions can be described by only one analytical function that includes the no-till emission plus an exponential term modulated by tillage and environmentally dependent parameters. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Cyclodextrin glycosyltransferase production by new Bacillus sp. strains isolated from brazilian soil
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This work evaluates some collateral effects caused by the application of the Fenton process to 1,1-bis(4-chlorophenyl)-2,2,2-trichloroethane (DDT) and diesel degradation in soil. While about 80% of the diesel and 75% of the DDT present in the soil were degraded in a slurry system, the dissolved organic carbon (DOC) in the slurry filtrate increased from 80 to 880 mg l(-1) after 64 h of reaction and the DDT concentration increased from 12 to 50 mu g l(-1). Experiments of diesel degradation conducted on silica evidenced that soluble compounds were also formed during diesel oxidation. Furthermore, significant increase in metal concentrations was also observed in the slurry filtrate after the Fenton treatment when compared to the control experiment leading to excessive concentrations of Cr, Ni, Cu and Mn according to the limits imposed for water. Moreover, 80% of the organic matter naturally present in the soil was degraded and a drastic volatilization of DDT and 2,2-bis(4-chlorophenyl)-1,1-dichloroethylene was observed. Despite the high percentages of diesel and DDT degradation in soil, the potential overall benefits of its application must be evaluated beforehand taking into account the metal and target compounds dissolution and the volatilization of contaminants when the process is applied. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
A red tropical soil was selected, with the main purpose of investigating how it reacted with calcitic and dolomitic limes, and which products are formed. Under normal (23-28oC) or slightly accelerated (40o and 60oC) conditions there is a rapid and substantial interaction between lime (calcitic or dolomitic) and the soil. The reactions take place in two steps, one before 7 g lime/100 g soil, and the other after 8 g lime/100 g of soil, either for calcitic or dolomitic lime. A morphologically discrete reaction product (tri-calcium aluminate hexahydrate) was found in the study, and in spite of the difference in morphology the product is shown to be the same by XRD for all compositions and T.-J.M.H.
Resumo:
Metagenomics has been widely employed for discovery of new enzymes and pathways to conversion of lignocellulosic biomass to fuels and chemicals. In this context, the present study reports the isolation, recombinant expression, biochemical and structural characterization of a novel endoxylanase family GH10 (SCXyl) identified from sugarcane soil metagenome. The recombinant SCXyl was highly active against xylan from beechwood and showed optimal enzyme activity at pH 6,0 and 45°C. The crystal structure was solved at 2.75 Å resolution, revealing the classical (β/α)8-barrel fold with a conserved active-site pocket and an inherent flexibility of the Trp281-Arg291 loop that can adopt distinct conformational states depending on substrate binding. The capillary electrophoresis analysis of degradation products evidenced that the enzyme displays unusual capacity to degrade small xylooligosaccharides, such as xylotriose, which is consistent to the hydrophobic contacts at the +1 subsite and low-binding energies of subsites that are distant from the site of hydrolysis. The main reaction products from xylan polymers and phosphoric acid-pretreated sugarcane bagasse (PASB) were xylooligosaccharides, but, after a longer incubation time, xylobiose and xylose were also formed. Moreover, the use of SCXyl as pre-treatment step of PASB, prior to the addition of commercial cellulolytic cocktail, significantly enhanced the saccharification process. All these characteristics demonstrate the advantageous application of this enzyme in several biotechnological processes in food and feed industry and also in the enzymatic pretreatment of biomass for feedstock and ethanol production. © 2013 Alvarez et al.