35 resultados para single-frequency fiber amplifier

em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The ionospheric effect is one of the major errors in GPS data processing over long baselines. As a dispersive medium, it is possible to compute its influence on the GPS signal with the ionosphere-free linear combination of L1 and L2 observables, requiring dual-frequency receivers. In the case of single-frequency receivers, ionospheric effects are either neglected or reduced by using a model. In this paper, an alternative for single-frequency users is proposed. It involves multiresolution analysis (MRA) using a wavelet analysis of the double-difference observations to remove the short- and medium-scale ionosphere variations and disturbances, as well as some minor tropospheric effects. Experiments were carried out over three baseline lengths from 50 to 450 km, and the results provided by the proposed method were better than those from dual-frequency receivers. The horizontal root mean square was of about 0.28 m (1 sigma).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Among the positioning systems that compose GNSS (Global Navigation Satellite System), GPS has the capability of providing low, medium and high precision positioning data. However, GPS observables may be subject to many different types of errors. These systematic errors can degrade the accuracy of the positioning provided by GPS. These errors are mainly related to GPS satellite orbits, multipath, and atmospheric effects. In order to mitigate these errors, a semiparametric model and the penalized least squares technique were employed in this study. This is similar to changing the stochastical model, in which error functions are incorporated and the results are similar to those in which the functional model is changed instead. Using this method, it was shown that ambiguities and the estimation of station coordinates were more reliable and accurate than when employing a conventional least squares methodology.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A performance comparison between a recently proposed novel technique known as fast orthogonal frequency-division multiplexing (FOFDM) and conventional orthogonal frequency-division multiplexing (OFDM) is undertaken over unamplified, intensity-modulated, and direct-detected directly modulated laser-based optical signals. Key transceiver parameters, such as the maximum achievable transmission capacity and the digital-to-analog/analog-to-digital converter (DAC/ADC) effects are explored thoroughly. It is shown that, similarly to conventional OFDM, the least complex and bandwidth efficient FOFDM can support up to similar to 20 Gb/s over 500 m worst-case multimode fiber (MMF) links having 3 dB effective bandwidths of similar to 200 MHz X km. For compensation of the DAC/ADC roll-off, a power-loading (PL) algorithm is adopted, leading to an FOFDM system improvement of similar to 4 dB. FOFDM and conventional OFDM give similar optimum DAC/ADC parameters over 500 m worst-case MMF, while over 50 km single-mode fiber a maximum deviation of only similar to 1 dB in clipping ratio is observed due to the imperfect chromatic dispersion compensation caused by one-tap equalizers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the absence of the selective availability, which was turned off on May 1, 2000, the ionosphere can be the largest source of error in GPS positioning and navigation. Its effects on GPS observable cause a code delays and phase advances. The magnitude of this error is affected by the local time of the day, season, solar cycle, geographical location of the receiver and Earth's magnetic field. As it is well known, the ionosphere is the main drawback for high accuracy positioning, when using single frequency receivers, either for point positioning or relative positioning of medium and long baselines. The ionosphere effects were investigated in the determination of point positioning and relative positioning using single frequency data. A model represented by a Fourier series type was implemented and the parameters were estimated from data collected at the active stations of RBMC (Brazilian Network for Continuous Monitoring of GPS satellites). The data input were the pseudorange observables filtered by the carrier phase. Quality control was implemented in order to analyse the adjustment and to validate the significance of the estimated parameters. Experiments were carried out in the equatorial region, using data collected from dual frequency receivers. In order to validate the model, the estimated values were compared with ground truth. For point and relative positioning of baselines of approximately 100 km, the values of the discrepancies indicated an error reduction better than 80% and 50% respectively, compared to the processing without the ionospheric model. These results give an indication that more research has to be done in order to provide support to the L1 GPS users in the Equatorial region.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the past few years the interest is accomplishing a high accuracy positioning increasing. One of the methods that has been applied by the scientific community is the network based on positioning. By using multiple reference station data, it is possible to obtain centimetric positioning in a larger coverage area, in addition to gain in reliability, availability and integrity of the service. Besides, using this concept, it is possible to model the atmospheric effects (troposphere refraction and ionosphere effect). Another important question concerning this topic is related to the transmission of the network corrections to the users. There are some possibilities for this fact and an efficient one is the Virtual Reference Station (VRS) concept. In the VRS concept, a reference station is generated near to the rover receiver (user). This provides a short baseline and the user has the possibility of using a single frequency receiver to accomplish the relative positioning. In order to test this kind of positioning method, a software has been developed at São Paulo State University. In this paper, the methodology applied to generate the VRS data is described and the VRS quality is analyzed by using the Precise Point Positioning (PPP) method.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the relative positioning, even considering that part of the errors due to ionosphere is canceled with the double-difference observations, strong ionospheric effects can occur in maximum solar activity period. However, in minimum solar activity period, the ionospheric effects decrease significantly and therefore an improvement of the relative positioning performance takes place. In this paper we aim at showing that improvement for the scientific and GPS community users. So, have been experiments by using GPS data of two stations of the Brazilian Network for Continuous Monitoring of GPS, forming a baseline of 430 km. The processing were use accomplished with interval of two hours, and only L1 carrier data have been used. The analysis of the obtained results has been carried out from the discrepancies between the "true" coordinates and corresponding ones obtained in the processing. In maximum solar activity period the discrepancy value reached 25 m. on the other hand, in minimum solar activity period, the discrepancy value reached 5,5 m. It is important to emphasize that the majority of the discrepancy values didn't exceed 0,50 m, and in some cases only reached 0,10 m. This shows the increase of application possibilities of the relative positioning using single-frequency GPS receivers in minimum solar activity period.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To prevent large errors in the GPS positioning, cycle slips should be detected and corrected. Such procedure is not trivial, mainly for single frequency receivers, but normally it is not noticed by the users. Thus, it will be discussed some practical and more used methods for cycle slips detection and correction using just GPS single-frequency observations. In the detection, the triple (TD) and tetra differences were used. In relation to the correction, in general, each slip is corrected in the preprocessing. Otherwise, other strategies should be adopted during the processing. In this paper, the option was to the second option, and two strategies were tested. In one of them, the elements of the covariance matrix of the involved ambiguities are modified and new ambiguity estimation starts. In the one, a new ambiguity is introduced as additional unknown when a cycle slip is detected. These possibilities are discussed and compared in this paper, as well as the aspects related to the practicity, implementation and viability of each one. Some experiments were carried out using simulated data with cycle slips in different satellites and epochs of the data. This allowed assessing and comparing the results of different occurrence of cycle slip and correction in several conditions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The ionosphere is a major source of systematic error in the GPS observables. As this error is directly proportional to the TEC (Total Electron Content), the quality of GPS positioning (especially with single frequency receivers) can be significantly affected by regular changes of TEC. The ionosphere factor is even more relevant in the Brazilian region, where ionospheric phenomena, such as the Equatorial Anomaly, intensify these variations. Taking the above mentioned factors into account, experiments were conducted in this research to evaluate the daily and seasonal behavior of the TEC and the point positioning with GPS (single frequency) in periods of high and low solar activity in the Brazilian region. The results showed a direct correlation between the decrease in electrons density in the ionosphere (period of low solar activity) and improvement in positioning accuracy, as well as a large influence of Equatorial Anomaly on the results of point positioning.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective: To assess the reliability of the standing measurement of hand-to-foot bioimpedance compared with measurements made in the lying position.Research Methods and Procedures: In 205 volunteers 6 to 89 years of age, 111 males and 94 females from six ethnic groups, effects of posture, time, and age on hand-to-foot resistance were studied over a range of body size. The effect of time in a position on resistance was also recorded in a small subset (n = 10), and repeat measurements over 3 days at the same time of the day were recorded in another subset (n = 12).Results: Lying impedance was consistently higher than standing, with the relationship (resistance lying/resistance standing) for the children (5 to 14 years) being 1.031, progressing to a ratio of 1.016 in those >60 years. The time spent static in either position did change resistance measurements - a decrease of up to 9 Omega (mean 5 Omega, 1.0%) over 10 minutes of standing and an increase of up to 7 Omega (mean 3 Omega, 0.7%) with lying.Discussion: In the field, measurements of hand-to-foot bioimpedance can be made in the standing position, and, with appropriate adjustment, previously validated recumbent equations can be used. Given that errors in the measurement of height and weight also affect the reliability of the derivation of body fat from bioelectrical conductance, the errors that may arise from a more practical standing measurement rather than lying are minimal.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work it is introduced a new approach to calculate the density of liquids in terms of the energies of the acoustic signals. This method is compared to other methods in the time domain (peak-to-peak amplitudes) and frequency domain magnitudes at a single frequency. It is used a measurement cell based on a multiple reflection technique, and it is developed an acoustic model for the cell. Simulations and experiments using several liquids are presented, showing that the energy method a less sensitive to noise than the other techniques. The relative errors in the density are smaller than 0.2% when compared to the values measured with a pycnometer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Single frequency GPS receivers have been many used in GPS surveys. Among the several applications, one can mention those that are to obtain the receiver's antenna coordinates in real time. One of the main error sources to these applications is the ionosphere systematic error. In the FCT/UNESP a regional ionosphere model (Mod_Ion) was developed. It has been implemented to execute after collecting of GPS data. At real time application two improvements in the Mod_Ion were introduced, consisting of an alteration of the function of modeling and implementation of the Kalman Filter. The results of the experiments showed that the modifications were the most effective in the ionosphere systematic effect's corrections, providing a improvement in the accuracy of point positioning, of 90,75%, in period of the highest ionosphere activity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nowadays, with the implantation of GNSS (Global Navigation Satellite System) reference station networks, several positioning techniques have been developed and/or improved. Using such kind of network data it is possible to model the GNSS distance dependent errors and to compute correction terms for the network region. Several methods have been developed to formulate the corrections terms from network stations data. A method that has been received a great attention is the Virtual Reference Station (VRS). The idea is that the VRS data resemble as much as possible a real receiver data placed in the same local. Therefore, the user has the possibility of using the VRS as if it were a real reference station in your proximities, and to accomplish the relative positioning with a single frequency receiver. In this paper it is described a different methodology applied to implement the VRS concept, using atmospheric models developed by Brazilian researchers. Besides, experiments for evaluating the quality of generated VRS are presented, showing the efficiency of the proposed method.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The GPS observables are subject to several errors. Among them, the systematic ones have great impact, because they degrade the accuracy of the accomplished positioning. These errors are those related, mainly, to GPS satellites orbits, multipath and atmospheric effects. Lately, a method has been suggested to mitigate these errors: the semiparametric model and the penalised least squares technique (PLS). In this method, the errors are modeled as functions varying smoothly in time. It is like to change the stochastic model, in which the errors functions are incorporated, the results obtained are similar to those in which the functional model is changed. As a result, the ambiguities and the station coordinates are estimated with better reliability and accuracy than the conventional least square method (CLS). In general, the solution requires a shorter data interval, minimizing costs. The method performance was analyzed in two experiments, using data from single frequency receivers. The first one was accomplished with a short baseline, where the main error was the multipath. In the second experiment, a baseline of 102 km was used. In this case, the predominant errors were due to the ionosphere and troposphere refraction. In the first experiment, using 5 minutes of data collection, the largest coordinates discrepancies in relation to the ground truth reached 1.6 cm and 3.3 cm in h coordinate for PLS and the CLS, respectively, in the second one, also using 5 minutes of data, the discrepancies were 27 cm in h for the PLS and 175 cm in h for the CLS. In these tests, it was also possible to verify a considerable improvement in the ambiguities resolution using the PLS in relation to the CLS, with a reduced data collection time interval. © Springer-Verlag Berlin Heidelberg 2007.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Delayed feedback (DF) control is a well-established technique to suppress single frequency vibration of a non-minimum phase system. Modal control is also a well-established technique to control multiple vibration modes of a minimum phase system. In this paper these techniques are combined to simultaneously suppress multiple vibration modes of a non-minimum phase system involving a small time delay. The control approach is called delayed resonant feedback (DRF) where each modal controller consists of a modal filter to extract the target mode signal from the vibration response, and a phase compensator to account for the phase delay of the mode. The methodology is first discussed using a single mode system. A multi-mode system is then studied and experimental results are presented to demonstrate the efficacy of the control approach for two modes of a beam. It is shown that the system behaves as if each mode under control has a dynamic vibration absorber attached to it, even though the actuator and the sensor are not collocated and there is a time delay in the control system. © 2013 IOP Publishing Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)