24 resultados para silicate surface chemistry

em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"


Relevância:

90.00% 90.00%

Publicador:

Resumo:

The preparation of crack-free SnO2 supported membranes requires the development of new strategies of synthesis capable to allow controlled changes of surface chemistry and to improve the processability of supported layers. In this way, the controlled modification of the SnO2 nanoparticle surface by adding capping molecules like Tiron(R) ((OH)(2)C6H2(SO3Na)(2)) during the sol-gel process was studied, aiming to obtain high performance membranes. Colloidal suspensions were prepared by hydrolyzing SnCl4.5H(2)O aqueous solution with NH4OH in presence of Tiron(R). The effect of the amount of Tiro(R) (from I to 20 wt.%) on the structural features of nanoparticles, powder redispersability and particle-solution interface properties was investigated by X-ray powder diffraction (XRPD), extended X-ray absorption fine structure (EXAFS), quasi-elastic light scattering and electrophoretic mobility measurements. XRPD and EXAFS results showed that the addition of Tiron(R) up to 20 wt.% to colloidal suspensions does not affect the crystallite size of SnO2 primary particles, determined around 2-3 nm. This value is comparable to the hydrodynamic size measured after redispersion of powder prepared with amount of Tiro(R) higher than 7.5 wt.%, indicating the absence of condensation reactions between primary particles after the initial precipitation step. As a consequence the powder with amount of Tiron(R) > 7.5 wt.%, can be fully redispersed in aqueous solution at pH greater than or equal to I I until a nanoparticle concentration of 6 vol.%. The electrophoresis measurements showed a decrease of the isoelectric point by increasing the amount of grafted Tiron(R) at the SnO2 nanoparticle surface, resulting in negatively charged particle-solution interface in all the studied pH range (2-11). These features govern the gelation process favoring the preparation of crack-free SnO2 supported membranes. The control exercised by Tiron(R) modifying agent in the aggregation process allows the fine-tuning of the porosity, from 0.124 to 0.065 cm(3) g(-1), and mean pore size, from 6.4 to 1.9 nm, as the amount of grafted molecules increases from 0 to 10 wt.%. In consequence, the membrane cut-off determined by filtration of polyethylene glycol standard solutions can be screened from 1500 to 3500 g mol(-1). (C) 2002 Elsevier B.V. B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Biocompatible inorganic nano- and microcarriers can be suitable candidates for protein delivery. This study demonstrates facile methods of functionalization by using nanoscale linker molecules to change the protein adsorption capacity of hydroxyapatite (HA) powder. The adsorption capacity of bovine serum albumin as a model protein has been studied with respect to the surface modifications. The selected linker molecules (lysine, arginine, and phosphoserine) can influence the adsorption capacity by changing the electrostatic nature of the HA surface. Qualitative and quantitative analyses of linker-molecule interactions with the HA surface have been performed by using NMR spectroscopy, zeta-potential measurements, X-ray photoelectron spectroscopy, and thermogravimetric analyses. Additionally, correlations to theoretical isotherm models have been calculated with respect to Langmuir and Freundlich isotherms. Lysine and arginine increased the protein adsorption, whereas phosphoserine reduced the protein adsorption. The results show that the adsorption capacity can be controlled with different functionalization, depending on the protein-carrier selections under consideration. The scientific knowledge acquired from this study can be applied in various biotechnological applications that involve biomolecule-inorganic material interfaces.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Nanostructures on implant surfaces have been shown to enhance osseointegration; however, commonly used evaluation techniques are probably not sufficiently sensitive to fully determine the effects of this process. This study aimed to observe the osseointegration properties of nanostructured calcium phosphate (CaP)-coated implants, by using a combination of three-dimensional imaging and conventional histology. Titanium implants were coated with stable CaP nanoparticles using an immersion technique followed by heat treatment. Uncoated implants were used as the control. After topographical and chemical characterizations, implants were inserted into the rabbit femur. After 2 and 4 weeks, the samples were retrieved for micro-computed tomography and histomorphometric evaluation. Scanning electron microscopy evaluation indicated that the implant surface was modified at the nanoscale by CaP to obtain surface textured with rod-shaped structures. Relative to the control, the bone-to-implant contact for the CaP-coated implant was significantly higher at 4 weeks after the implant surgery. Further, corresponding 3-D images showed active bone formation surrounding the implant. 3-D quantification and 2-D histology demonstrated statistical correlation; moreover, 3-D quantification indicated a statistical decrease in bone density in the non-coated control implant group between 2 and 4 weeks after the surgery. The application of 3-D evaluation further clarified the temporal characteristics and biological reaction of implants in bone. (C) 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This study investigates the thrombocyte aggregation process in the South American fresh water turtle (Phrynopys hilarii) using electron microscopy. Blood was taken from surgically exposed lateral neck vessels often turtles Phrynopys hilarii during the spring and summer seasons, when the mean temperature is 37°C. Blood samples were fixed with Karnovsky solution for processing by transmission electron microscopy. The turtle thrombocytes were spindle-shaped with lobulated nuclei. Prominent vesicles and canaliculi were found throughout the cytoplasm. The cytoplasm organelles showed an agranular endoplasmatic reticulum, Golgi complex near the centrioles and scattered free ribosomes. These cells are similar to bird thrombocytes but distinct from fish and frog thrombocytes. Blood clotting time was 5 min ± 30 sec measured by the Lee and White method. Structural alterations resulting from the aggregation process occurred after activation. Thrombocytes developed numerous filopodial projections, an increased number of vacuoles and changed from spindle to spherical shape. P. hilarii thrombocytes have different morphologic characteristics compared to other non-mammalian vertebrate cells. These cells can participate in the aggregation process, as observed in birds.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The local concentrations of chloride, Cl b, and bromide, Br b, in the interface of vesicles prepared with dioctadecyldimethylammonium chloride, DODAC, or bromide, DODAB, dipalmitoylphosphatidylcholine, DPPC, dimyristoylphosphatidylcholine, DMPC, and mixtures of DMPC, DPPC, and DODAC were determined by chemical trapping by analyzing product yields from spontaneous dediazoniation of vesicle-bound 2,6-dimethyl-4-hexadecylbenzenediazonium ion. The values of Cl b and Br b in DODAC and DODAB vesicles increase with vesicle size, in agreement with previous data showing that counterion dissociation decreases with vesicle size. Addition of tetramethylammonium chloride displaces bromide from the DODAB vesicular interface. The value for the selectivity constant for Br/Cl exchange at the DODAB vesicular interface obtained by chemical trapping was ∼2.0, well within values obtained for comparable amphiphiles. In vesicles of DPPC the values of Cl b were very sensitive to the nature of the cation and decreased in the order Ca 2+ > Mg 2+ > Li + > Na + > K + = Cs + = Rb + ≥ +. The effect of the cation becomes more important as temperature increases above the phase transition temperature, T m, of the lipid. The values of Cl b increased sigmoidally with the mol % of DODAC in vesicles prepared with DODAC/lipid mixtures. In sonicated vesicles prepared with DODAC and DMPC (or DPPC), the values of Cl b reach local concentrations measured for the pure amphiphile at 80 mol % DODAC. These results represent the first extensive study of local concentration of ions determined directly by chemical trapping in vesicles prepared with lipids, synthetic ampliiphiles, and their mixtures.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The present paper describes the one-pot procedure for the formation of self-assembled thin films of two silanes on the model oxidized silicon wafer, SiO2/Si. SiO2/Si is a model system for other surfaces, such as glass, quartz, aerosol, and silica gel. MALDI-TOF MS with and without a matrix, XPS, and AFM have confirmed the formation of self-assembled thin films of both 3-imidazolylpropyltrimethoxysilane (3-IPTS) and 4-(N- propyltriethoxysilane-imino)pyridine (4-PTSIP) on the SiO2/Si surface after 30 min. Longer adsorption times lead to the deposition of nonreacted 3-IPTS precursors and the formation of agglomerates on the 3-IPTS monolayer. The formation of 4-PTSIP self-assembled layers on SiO2/Si is also demonstrated. The present results for the flat SiO2/Si surface can lead to a better understanding of the formation of a stationary phase for affinity chromatography as well as transition-metal-supported catalysts on silica and their relationship with surface roughness and ordering. The 3-IPTS and 4-PTSIP modified SiO2/Si wafers can also be envisaged as possible built-on-silicon thin-layer chromatography (TLC) extraction devices for metal determination or N-heterocycle analytes, such as histidine and histamine, with on-spot MALDI-TOF MS detection. © 2005 Elsevier Inc. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

It is believed that the dissolution of chalcopyrite (CuFeS2) in acid medium can be accelerated by the addition of Cl- ions, which modify the electrochemical reactions in the leaching system. Electrochemical noise analysis (ENA) was utilized to evaluate the effect of the Cl- ions and Acidithiobacillus ferrooxidans on the oxidative dissolution of a CPE-chalcopyrite (carbon paste electrode modified with chalcopyrite) in acid medium. The emphasis was on the analysis of the admittance plots (Ac) calculated by ENA. In general, a stable passive behavior was observed, mainly during the initial stages of CPE-chalcopyrite immersion, characterized by a low passive current and a low dispersion of the Ac plots, mainly after bacteria addition. This can be explained by the adhesion of bacterial cells on the CPE-chalcopyrite surface acting as a physical barrier. The greater dispersions in the Ac plots occurred immediately after the Cl- ions addition, in the absence of bacteria characterizing an active-state. In the presence of bacteria the addition of Clions only produced some effect after some time due to the barrier effect caused by bacteria adhesion. © (2009) Trans Tech Publications.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Optical characteristics of tellurite glasses containing silver nanoparticles (NPs) and the influence on the emission spectrum of Er 3+ ions were studied. The transitions 4f ↔ 4f from erbium ions, mainly the 4I13/2 → 4I15/2 transition that involve upconversion energy process, have a strongly dependence with the chemical structure of the rare earth ion. In the present work, silver nanparticles (NPs) embedded in the host vitreous material, show a significant enhance (or quenching) on the erbium fluorescence due the long-range electromagnetic interaction between the plasmon surface energy of the Ag NPs (Localized Surface Plasmon Resonance -LSPR) and the Er3+ ions.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Plasma processing of the surfaces of biomaterials is interesting because it enables modification of the characteristics of a surface without affecting bulk properties. In addition, the results are strongly influenced by the conditions of the treatment. Therefore, by adjusting the plasma parameters it is possible to tailor the surface properties to best fulfill the requirements of a given application. In this work, polyurethane substrates have been subjected to sulfur hexafluoride glow discharge plasmas. The influences of different SF 6 plasma exposure times and pressures on the adhesion of Staphylococcus aureus and Pseudomonas aeruginosa to the polymer have been investigated. The wettability and surface free energy have been evaluated via contact angle measurements. At low pressure (6.7 Pa) the contact angle decreases with increasing exposure time in the 180 s to 540 s interval, but at higher pressure (13.3 Pa) it increases as a function of the same variable. Bacterial adhesion has been quantified from in vitro experiments by determining the growth of colonies on Petri dishes treated with agar nutrient. It has been observed that the surface properties play an important role in microbe adhesion. For instance, the density of adhered P. aeruginosa decreased as the surface contact angle increased. S. aureus preferred to adhere to hydrophobic surfaces. © 2011 by Begell House, Inc.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This study evaluated the potential of plasma treatments to modify the surface chemistry and hydrophobicity of a denture base acrylic resin to reduce the Candida glabrata adhesion. Specimens (n=54) with smooth surfaces were made and divided into three groups (n=18): control - non-treated; experimental groups - submitted to plasma treatment (Ar/50W; AAt/130W). The effects of these treatments on chemical composition and surface topography of the acrylic resin were evaluated. Surface free energy measurements (SFE) were performed after the treatments and after 48h of immersion in water. For each group, half (n=9) of the specimens were preconditionated with saliva before the adhesion assay. The number of adhered C. glabrata was evaluated by cell counting after crystal violet staining. The Ar/50W and AAt/130W treatments altered the chemistry composition, hydrophobicity and topography of acrylic surface. The Ar/50W group showed significantly lower C. glabrata adherence than the control group, in the absence of saliva. After preconditioning with saliva, C. glabrata adherence in experimental and control groups did not differ significantly. There were significant changes in the SFE after immersion in water. The results demonstrated that Ar/50W treated surfaces have potential for reducing C. glabrata adhesion to denture base resins and deserve further investigation, especially to tailor the parameters to prolong the increased wettability. © 2012 Blackwell Verlag GmbH.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Naked maghemite nanoparticles, namely, surface active maghemite nanoparticles (SAMNs), characterized by a diameter of about 10 nm, possessing peculiar colloidal stability, surface chemistry, and superparamagnetism, present fundamental requisites for the development of effective magnetic purification processes for biomolecules in complex matrices. Polyphenolic molecules presenting functionalities with different proclivities toward iron chelation were studied as probes for testing SAMN suitability for magnetic purification. Thus, the binding efficiency and reversibility on SAMNs of phenolic compounds of interest in the pharmaceutical and food industries, namely, catechin, tyrosine, hydroxytyrosine, ferulic acid, coumaric acid, rosmarinic acid, naringenin, curcumin, and cyanidin-3-glucoside, were evaluated. Curcumin emerged as an elective compound, suitable for magnetic purification by SAMNs from complex matrices. A combination of curcumin, demethoxycurcumin, and bis-demethoxycurcumin was recovered by a single magnetic purification step from extracts of Curcuma longa rhizomes, with a purity >98% and a purification yield of 45%, curcumin being >80% of the total purified curcuminoids.