10 resultados para separated shear layer
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
Pós-graduação em Engenharia Mecânica - FEIS
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The concrete offshore platforms, which are subjected a several loading combinations and, thus, requires an analysis more generic possible, can be designed using the concepts adopted to shell elements, but the resistance must be verify in particular cross-sections to shear forces. This work about design of shell elements will be make using the three-layer shell theory. The elements are subject to combined loading of membrane and plate, totalizing eight components of internal forces, which are three membrane forces, three moments (two out-of-plane bending moments and one in-plane, or torsion, moment) and two shear forces. The design method adopted, utilizing the iterative process proposed by Lourenco & Figueiras (1993) obtained from equations of equilibrium developed by Gupta (1896) , will be compared to results of experimentally tested shell elements found in the literature using the program DIANA.
Resumo:
Fiber metal laminates are the frontline materials for aeronautical and space structures. These composites consists of layers of 2024-T3-aluminum alloy and composite prepreg layers. When the composite layer is a carbon fiber prepreg, the fiber metal laminate, named Carall, offers significant improvements over current available materials for aircraft structures. While weight reduction and improved damage tolerance characteristics were the prime drivers to develop this new family of materials, it turns out that they have additional benefits, which become more and more important for today's designers, such as cost reduction and improved safety. The degradation of composites is due to environmental effects mainly on the chemical and/or physical properties of the polymer matrix leading to loss of adhesion of fiber/resin interface. Also, the reduction of fiber strength and stiffness are expected due to environmental degradation. Changes in interface/interphase properties leads to more pronounced changes in shear properties than any other mechanical properties. In this work, the influence of moisture in shear properties of carbon fiber/epoxy composites and Carall have been investigated by using interlaminar shear (ILSS) and Iosipescu tests. It was observed that hygrothermal conditioning reduces the Iosipescu shear strength of CF/E and Carall composites due to the moisture absorption in these materials. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Objective: The aim of this study was to investigate the shear strength between distinct associations of different commercial composite resins and their fracture modes.Methods: Nine composite-composite associations (n = 90) were prepared for shear strength evaluation and separated into the following groups: Z/Z (Filtek Z250 UD + Filtek Z250 A2); Z/ D (Filtek Z250 UD + Durafill VS A2); Z/S (Filtek Z250 UD + Filtek Supreme YT); C/C (Charisma OA2 + Charisma A2); C/D (Charisma OA2 + Durafill VS A2); C/S (Charisma OA2 + Filtek Supreme YT); H/H (Herculite XRV B2D + Herculite XRV B2E); H/D (Herculite XRV B2D + Durafill VS A2); H/S (Herculite XRV B2D + Filtek Supreme YT). Shear tests were carried out using universal mechanical test equipment with a load of 200 kgf and speed of 0.5 mm/min. Ultimate shear strength data (MPa) from all tested groups were submitted to analysis of variance (one-way ANOVA) and the Tukey test. The fractured surfaces of the test samples were visually evaluated by binocular stereomicroscope at 20 times magnification. Fractures were classified as either adhesive or cohesive or mixed.Results: The highest ultimate shear strength observed for composite-composite associations was found for the groups: Z/Z, C/S, H/H, H/S, Z/S and C/C. Those associations containing the Durafill resin were weaker than the others.Conclusion: Microparticle RBC associations presented lower shear strength than hybrid and/or nanoparticle RBC associations, once the only significant difference was found when the Durafill resin was involved. (c) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Objective: Although direct bonding takes up less clinical time and ensures increased preservation of gingival health, the banding of molar teeth is still widespread nowadays. It would therefore be convenient to devise methods capable of increasing the efficiency of this procedure, notably for teeth subjected to substantial masticatory impact, such as molars. This study was conducted with the purpose of evaluating whether direct bonding would benefit from the application of an additional layer of resin to the occlusal surfaces of the tube/tooth interface. Methods: A sample of 40 mandibular third molars was selected and randomly divided into two groups: Group 1 - Conventional direct bonding, followed by the application of a layer of resin to the occlusal surfaces of the tube/tooth interface, and Group 2 - Conventional direct bonding. Shear bond strength was tested 24 hours after bonding with the aid of a universal testing machine operating at a speed of 0.5mm/min. The results were analyzed using the independent t-test. Results: The shear bond strength tests yielded the following mean values: 17.08 MPa for Group 1 and 12.60 MPa for Group 2. Group 1 showed higher statistically significant shear bond strength than Group 2. Conclusions: The application of an additional layer of resin to the occlusal surfaces of the tube/tooth interface was found to enhance bond strength quality of orthodontic buccal tubes bonded directly to molar teeth.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Odontologia Restauradora - ICT
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)