23 resultados para sensor location problem
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
This paper proposes a cluster partitioning technique to calculate improved upper bounds to the optimal solution of maximal covering location problems. Given a covering distance, a graph is built considering as vertices the potential facility locations, and with an edge connecting each pair of facilities that attend a same client. Coupling constraints, corresponding to some edges of this graph, are identified and relaxed in the Lagrangean way, resulting in disconnected subgraphs representing smaller subproblems that are computationally easier to solve by exact methods. The proposed technique is compared to the classical approach, using real data and instances from the available literature. © 2010 Edson Luiz França Senne et al.
Resumo:
This paper describes a branch-and-price algorithm for the p-median location problem. The objective is to locate p facilities (medians) such as the sum of the distances from each demand point to its nearest facility is minimized. The traditional column generation process is compared with a stabilized approach that combines the column generation and Lagrangean/surrogate relaxation. The Lagrangean/surrogate multiplier modifies; the reduced cost criterion, providing the selection of new productive columns at the search tree. Computational experiments are conducted considering especially difficult instances to the traditional column generation and also with some large-scale instances. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Reformulações e relaxação Lagrangiana para o problema de dimensionamento de lotes com várias plantas
Resumo:
Pós-graduação em Matemática - IBILCE
Resumo:
This paper considers the multi-plant lot sizing problem. Each item can be produced in any plant and it is possible to meet the demand of a particular plant with production from one (or several) other plants, in this case, incurs a transfer cost. The objective is todevelop strong formulations for this problem. Reformulations that based on the shortest path problem and facility location problem are investigated. Finally, some computational results are presented comparing all the proposed formulations.
Resumo:
In this work, a tabu search algorithm for solving uncapacitated location problems is presented. The uncapacitated location problem is a classic problem of localization and occurs in many practical situations. The problem consists in determining in a network, at the minimum possible cost, the better localization, in a network, for the installation of facilities in order to attend the customers' associated demands, at the minimum possible cost. One admits that there exists a cost associated with the opening of a facility and a cost of attendance of each customer by any open facilities. In the particular case of the uncapacitated location problem there is no capacity limitation to attend the customers’ demands. There are some parameters in the algorithm that influence the solution’s quality. These parameters were tested and optimal values for them were obtained. The results show that the proposed algorithm is able to find the optimal solution for all small tested problems keeping the compromise between solution’s quality and computational time. However, to solve bigger problems, the structure of the algorithm must be changed in its structure. The implemented algorithm is integrated to a computational platform for solution of logistic problems
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Smart material technology has become an area of increasing interest for the development of lighter and stronger structures that are able to incorporate actuator and sensor capabilities for collocated control. In the design of actively controlled structures, the determination of the actuator locations and the controller gains is a very important issue. For that purpose, smart material modeling, modal analysis methods, and control and optimization techniques are the most important ingredients to be taken into account. The optimization problem to be solved in this context presents two interdependent aspects. The first is related to the discrete optimal actuator location selection problem, which is solved in this paper using genetic algorithms. The second is represented by a continuous variable optimization problem, through which the control gains are determined using classical techniques. A cantilever Euler-Bernoulli beam is used to illustrate the presented methodology.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Continuing development of new materials makes systems lighter and stronger permitting more complex systems to provide more functionality and flexibility that demands a more effective evaluation of their structural health. Smart material technology has become an area of increasing interest in this field. The combination of smart materials and artificial neural networks can be used as an excellent tool for pattern recognition, turning their application adequate for monitoring and fault classification of equipment and structures. In order to identify the fault, the neural network must be trained using a set of solutions to its corresponding forward Variational problem. After the training process, the net can successfully solve the inverse variational problem in the context of monitoring and fault detection because of their pattern recognition and interpolation capabilities. The use of structural frequency response function is a fundamental portion of structural dynamic analysis, and it can be extracted from measured electric impedance through the electromechanical interaction of a piezoceramic and a structure. In this paper we use the FRF obtained by a mathematical model (FEM) in order to generate the training data for the neural networks, and the identification of damage can be done by measuring electric impedance, since suitable data normalization correlates FRF and electrical impedance.
Resumo:
Smart material technology has become an area of increasing interest for the development of lighter and stronger structures which are able to incorporate actuator and sensor capabilities for collocated control. In the design of actively controlled structures, the determination of the actuator locations and the controller gains, is a very important issue. For that purpose, smart material modelling, modal analysis methods, control and optimization techniques are the most important ingredients to be taken into account. The optimization problem to be solved in this context presents two interdependent aspects. The first one is related to the discrete optimal actuator location selection problem which is solved in this paper using genetic algorithms. The second is represented by a continuous variable optimization problem, through which the control gains are determined using classical techniques. A cantilever Euler-Bernoulli beam is used to illustrate the presented methodology.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Smart material technology has become an area of increasing interest for the development of lighter and stronger structures which are able to incorporate actuator and sensor capabilities for collocated control. In the design of actively controlled structures, the determination of the actuator locations and the controller gains, is a very important issue. For that purpose, smart material modelling, modal analysis methods, control and optimization techniques are the most important ingredients to be taken into account. The optimization problem to be solved in this context presents two interdependent aspects. The first one is related to the discrete optimal actuator location selection problem, which is solved in this paper using genetic algorithms. The second is represented by a continuous variable optimization problem, through which the control gains are determined using classical techniques. A cantilever Euler-Bernoulli beam is used to illustrate the presented methodology.
Resumo:
This paper investigates both theoretically and experimentally the effect of the location and number of sensors and magnetic bearing actuators on both global and local vibration reduction along a rotor using a feedforward control scheme. Theoretical approaches developed for the active control of beams have been shown to be useful as simplified models for the rotor scenario. This paper also introduces the time-domain LMS feedforward control strategy, used widely in the active control of sound and vibration, as an alternative control methodology to the frequency-domain feedforward approaches commonly presented in the literature. Results are presented showing that for any case where the same number of actuators and error sensors are used there can be frequencies at which large increases in vibration away from the error sensors can occur. It is also shown that using a larger number of error sensors than actuators results in better global reduction of vibration but decreased local reduction. Overall, the study demonstrated that an analysis of actuator and sensor locations when feedforward control schemes are used is necessary to ensure that harmful increased vibrations do not occur at frequencies away from rotor-bearing natural frequencies or at points along the rotor not monitored by error sensors.
Resumo:
In this work the problem of defects location in power systems is formulated through a binary linear programming (BLP) model based on alarms historical database of control and protection devices from the system control center, sets theory of minimal coverage (AI) and protection philosophy adopted by the electric utility. In this model, circuit breaker operations are compared to their expected states in a strictly mathematical manner. For solving this BLP problem, which presents a great number of decision variables, a dedicated Genetic Algorithm (GA), is proposed. Control parameters of the GA, such as crossing over and mutation rates, population size, iterations number and population diversification, are calibrated in order to obtain efficiency and robustness. Results for a test system found in literature, are presented and discussed. © 2004 IEEE.