3 resultados para semiconductor sensor

em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"


Relevância:

70.00% 70.00%

Publicador:

Resumo:

This paper describes the development of a semiconductor strain gage tactile transducer. It was designed with the goal of measuring finger forces without affecting the hand dexterity. The transducer structure was manufactured with stainless steel and has small dimensions ( 4 min diameter and I min thickness). It is light and suitable to connect to the finger pads. It has a device that prevents its damage when forces are applied. The semiconductor strain gage was used over due its small size and high sensitivity, although it has high temperature sensitivity. Theory, design and construction details are presented the signal conditioning circuit is very simple because the semiconductor strain gage sensitivity is high. It presents linear response from 0 to 100 N, 0.5 N resolution, fall time of 7.2 ms, good repeatability, and small hysteresis. The semiconductor strain gage transducer has characteristics that can make it very useful in Rehabilitation Engineering, Robotics, and Medicine.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bi1.5ZnSb1.5O7 dielectric ceramic with pyrochlore structure was investigated by impedance spectroscopy from 400 to 750 degreesC. Pyrochlore was synthesized by the polymeric precursor method, a chemical synthesis route derived from Pechini's method. The grain or bulk resistance exhibits a sensor temperature characteristic, being a thermistor with a negative temperature coefficient (NTC). Only a single region was identified on the resistance curve investigated. The NTC thermistor characteristic parameter (beta) is equal to 7140 degreesC, in the temperature range investigated. The temperature coefficient of the resistance (alpha) was derived, being equal to -4.46x10(-2) degreesC(-1) at 400 degreesC. The conduction mechanism and relaxation are discussed. (C) 2003 American Institute of Physics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The present work shows a study about the growing of ZnO nanorods by chemical bath deposition (CBD) and its application as gas sensor. It was prepared ZnO nanorods and Au decorated ZnO nanorods and the samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and gas sensing response measurements. The results obtained by XRD show the growth of ZnO phase. It was possible to observe the formation of uniform dense well-aligned ZnO nanorods. The results obtained also revealed that Ag nanoparticles have decorated the surface of ZnO nanorods successfully. Au nanoparticles with diameter of a few nanometers were distributed over the ZnO surface nanorods. The gas sensing response measurements showed a behavior of n type semiconductor. Furthermore, the Au-functionalized ZnO nanorods gas sensors showed a considerably enhanced response at 250 and 300 °C.