11 resultados para semiconductor laser
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
An experiment that combines opto-mechanical and electrical measurements for the characterization of a loudspeaker is presented. We describe a very simple laser vibrometer for evaluating the amplitude of the vibration (displacement) of the speaker cone. The setup is essentially a Michelson-type interferometer operated by an inexpensive semiconductor laser (diode laser). It is shown that the simultaneous measurements of three amplitudes (displacement, electrical current, and applied voltage), as functions of the frequency of vibration, allow us to characterize the speaker system. The experiment is easy to perform, and it demonstrates several useful concepts of optics, mechanics, and electricity, allowing, students to gain an intuitive physical insight into the relations between mathematical models and, an actual speaker system. (C) 2003 American Association of Physics Teachers.
Resumo:
Visible frequency upconversion emission through resonant energy-transfer involving neodymium and praseodymium ions in PbGeO3-PbF2-CdF2 glass excited by a semiconductor laser at 8 10 nm is investigated. Luminescence emission centered around 485, 530, 610, and 645 nm, which correspond to the P-3(0) -> H-3(4), P-3(1) + I-1(6) -> H-3(5), P-3(0) -> H-3(6) and P-1(0) -> F-3(2) transitions of praseodymium ions, respectively, are observed. The upconversion excitation of the Pr3+ ions excited-state emitting levels was accomplished by means of an ion-pair interaction involving ground-state absorption, multiphonon relaxation, and excited-state absorption of pump photons at 8 10 nm by the Nd3+ (I-4(9/2) -> H-2(9/2), F-4(5/2); F-4(3/2) -> P-2(1/2)) and direct energy-transfer to Pr3+ ((4)G(11/2) + K-2(11/2), H-3(4) -> I-4(9/2), P-3(1) + I-1(6)). The dependence of the upconversion emission intensity upon the excitation power, and neodymium concentration are also examined. (c) 2004 Elsevier B.V. All rights reserved.
Resumo:
Background and Objectives: Bone remodeling is characterized as a cyclic and lengthy process. It is currently accepted that not only this dynamics is triggered by a biological process, but also biochemical, electrical, and mechanical stimuli are key factors for the maintenance of bone tissue. The hypothesis that low-level laser therapy (LLLT) may favor bone repair has been suggested. The purpose of this study was to evaluate the bone repair in defects created in rat lower jaws after stimulation with infrared LLLT directly on the injured tissue.Study Design/Materials and Methods: Bone defects were prepared on the mandibles of 30 Holtzman rats allocated in two groups (n = 15), which were divided in three evaluation period (15, 45, and 60 days), with five animals each. control group-no treatment of the defect; laser group-single laser irradiation with a GaAlAs semiconductor diode laser device (lambda = 780 nm; P = 35 mW t = 40 s; circle minus = 1.0 mm; D = 178 J/cm(2); E = 1.4 J) directly on the defect area. The rats were sacrificed at the preestablished periods and the mandibles were removed and processed for staining with hematoxylin and eosin, Masson's Trichrome and picrosirius techniques.Results: the histological results showed bone formation in both groups. However, the laser group exhibited an advanced tissue response compared to the control group, abbreviating the initial inflammatory reaction and promoting rapid new bone matrix formation at 15 and 45 days (P < 0. 05). on the other hand, there were no significant differences between the groups at 60 days.Conclusion: the use of infrared LLLT directly to the injured tissue showed a biostimulating effect on bone remodeling by stimulating the modulation of the initial inflammatory response and anticipating the resolution to normal conditions at the earlier periods. However, there were no differences between the groups at 60 days.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The application of multi-wavelength holography for surface shape measurement is presented. In our holographic setup a Bi12TiO 20 (BTO) photorefractive crystal was the holographic recording medium and a multimode diode laser emitting in the red region was the light source in a two-wave mixing scheme. The holographic imaging with multimode lasers results in multiple holograms in the BTO. By employing such lasers the resulting holographic image appears covered of interference fringes corresponding to the object relief and the interferogram spatial frequency is proportional to the diode laser free spectral range (FSR). We used a Fabry-Perot étalon at the laser output for laser mode selection. Thus, larger effective values of the laser FSR were achieved, leading to higher-spatial frequency interferograms and therefore to more sensitive and accurate measurements. The quantitative evaluation of the interferograms was performed through the phase stepping technique (PST) and the phase map unwrapping was carried out through the Cellular-Automata method. For a given surface, shape measurements with different interferogram spatial frequencies were performed and compared, concerning measurement noise and visual inspection.
Resumo:
This study sought to assess the pulp chamber temperature in different groups of human teeth that had been bleached using hydrogen peroxide gel activated with halogen lamps or hybrid LED/laser appliances. Four groups of ten teeth (maxillary central incisors, mandibular incisors, mandibular canines, and maxillary canines) were used. A digital thermometer with a K-type thermocouple was placed inside pulp chambers that had been filled with thermal paste. A 35% hydrogen peroxide-based red bleaching gel was applied to all teeth and photocured for a total of three minutes and 20 seconds (five activations of 40 seconds each), using light from an LED/laser device and a halogen lamp. The temperatures were gauged every 40 seconds and the data were analyzed by three-way ANOVA, followed by Tukey's test. Regardless of the light source, statistically significant differences were observed between the groups of teeth. The mean temperature values (±SD) were highest for maxillary central incisors and lowest for mandibular canines. The halogen lamp appliance produced more pulp chamber heating than the LED/laser appliance. The increase in irradiation time led to a significant increase in temperature.
Resumo:
The aim of this study was to evaluate the effect of specific parameters of low-level laser therapy (LLLT) on biofilms formed by Streptococcus mutans, Candida albicans or an association of both species. Single and dual-species biofilms - SSB and DSB - were exposed to laser doses of 5, 10 or 20 J/cm 2 from a near infrared InGaAsP diode laser prototype (LASERTable; 780 ± 3 nm, 0.04 W). After irradiation, the analysis of biobilm viability (MTT assay), biofilm growth (cfu/mL) and cell morphology (SEM) showed that LLLT reduced cell viability as well as the growth of biofilms. The response of S. mutans (SSB) to irradiation was similar for all laser doses and the biofilm growth was dose dependent. However, when associated with C. albicans (DSB), S. mutans was resistant to LLLT. For C. albicans, the association with S. mutans (DSB) caused a significant decrease in biofilm growth in a dose-dependent fashion. The morphology of the microorganisms in the SSB was not altered by LLLT, while the association of microbial species (DSB) promoted a reduction in the formation of C. albicans hyphae. LLLT had an inhibitory effect on the microorganisms, and this capacity can be altered according to the interactions between different microbial species.
Resumo:
Objectives: The objective of this study was to apply low-level laser therapy (LLLT) to accelerate the recovery process of a child patient with Bell's palsy (BP). Design: This was a prospective study. Subject: The subject was a three-year-old boy with a sudden onset of facial asymmetry due to an unknown cause. Materials and methods: The low-level laser source used was a gallium aluminum arsenide semiconductor diode laser device (660 nm and 780 nm). No steroids or other medications were given to the child. The laser beam with a 0.04-cm2 spot area, and an aperture with approximately 1-mm diameter, was applied in a continuous emission mode in direct contact with the facial area. The duration of a laser session was between 15 and 30 minutes, depending on the chosen points and the area being treated. Light was applied 10 seconds per point on a maximum number of 80 points, when the entire affected (right) side of the face was irradiated, based on the small laser beam spot size. According to the acupuncture literature, this treatment could also be carried out using 10-20 Chinese acupuncture points, located unilaterally on the face. In this case study, more points were used because the entire affected side of the face (a large area) was irradiated instead of using acupuncture points. Outcome measures: The House-Brackmann grading system was used to monitor the evolution of facial nerve motor function. Photographs were taken after every session, always using the same camera and the same magnitude. The three-year-old boy recovered completely from BP after 11 sessions of LLLT. There were 4 sessions a week for the first 2 weeks, and the total treatment time was 3 weeks. Results: The result of this study was the improvement of facial movement and facial symmetry, with complete reestablishment to normality. Conclusions: LLLT may be an alternative to speed up facial normality in pediatric BP. © Copyright 2013, Mary Ann Liebert, Inc. 2013.
Resumo:
Introduction: Laser hair removal is becoming an increasingly popular alternative to traditional methods such as shaving, waxing, among other methods. Semiconductor diode lasers are considered the most efficient light sources available and are especially well suited for clinical applications including hair reduction. The effectiveness of laser hair reduction depends on many variables, including the skin type of the patient. Material and Methods: A patient with Fitzpatrick Skin Type IV was submitted to laser hair removal of the arms with a high-power diode laser system with long pulses with a wavelength of 800 nm, a fluence of 40 J/cm2 and a pulse width of 20 ms. A 12-month follow-up assessment was performed and included photography and questionnaire. Results: Hypopigmentation was observed after a single laser hair removal section. After 6 months with the area totally covered, a gradual suntan with a sun screen lotion with an SPF of 15 was prescribed by the dermatologist. After 12 months of the initial treatment, a complete recovery of the hypopigmentation was achieved. Conclusion: Although a safe procedure, lasers for hair removal may be associated with adverse side effects including undesired pigment alterations. Before starting a laser hair removal treatment, patients seeking the eradication of hair should be informed that temporary, and possibly permanent, pigmentary changes may occur. © 2013 Informa UK, Ltd.
Resumo:
Pós-graduação em Odontologia - FOAR
Resumo:
Pós-graduação em Odontologia - FOAR