15 resultados para scalar scattering
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The effects of nonlinear scalar field couplings on elastic proton-nucleus scattering observables are investigated using a relativistic impulse approximation. Nonlinear couplings affect in a nontrivial way the effective nucleon mass and the nuclear scalar and vector densities. Modifications on the densities might have observable consequences on scattering observables. Our investigation indicates that the description of the observables for the reactions p-O-16 and p-Ca-40 at 200 MeV are not greatly modified with the use of nonlinear models in comparison with the description using linear models.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
A simple proof is given that a 2 x 2 matrix scheme for an inverse scattering transform method for integrable equations can be converted into the standard form of the second-order scalar spectral problem associated with the same equations. Simple formulae relating these two kinds of representation of integrable equations are established.
Resumo:
We study the low-energy scattering of charmed (D) and strange (K) mesons by nucleons. The short-distance part of the interaction is due to quark-gluon interchanges derived from a model that realizes dynamical chiral symmetry breaking and confines color. The quark-gluon interaction incorporates a confining Coulomb-like potential extracted from lattice QCD simulations in Coulomb gauge and a transverse hyperfine interaction consistent with a finite gluon propagator in the infrared. The long-distance part of the interaction is due to single vector (rho, omega) and scalar (sigma) meson exchanges. We show results for scattering cross-sections for isospin I = 0 and I = 1.
Resumo:
Here we compute the static potential in scalar QED(3) at leading order in 1/Nf. We show that the addition of a non-minimal coupling of Pauli-type (is an element of(mu nu alpha)j(mu)partial derivative(nu)A(alpha)), although it breaks parity, it does not change the analytic structure of the photon propagator and consequently the static potential remains logarithmic ( confining) at large distances. The non-minimal coupling modifies the potential, however, at small charge separations giving rise to a repulsive force of short range between opposite sign charges, which is relevant for the existence of bound states. This effect is in agreement with a previous calculation based on Moller scattering, but differently from such calculation we show here that the repulsion appears independently of the presence of a tree level Chern-Simons term which rather affects the large distance behaviour of the potential turning it into a constant.
Resumo:
The behaviour of the helicity of an initially left-handed beam of massive fermions first interacting with a Coulomb field and then with a charged scalar particle via a photon exchange is analysed. It is found that in both cases the massive fermions have their helicity flipped, while massless fermions seeem to be unaffected by the electromagnetic field as far as their helicity is concerned.
Resumo:
Several parity-violating left-right asymmetries in Miller electron-electron and muon-muon scattering are considered in the context of the electroweak standard model at the tree level in fixed target and collider experiments. We show that in colliders the asymmetry with only one of the beams polarized is large enough to compensate the smaller cross section at high energies. We also show that these asymmetries are very sensitive to a doubly charged vector bilepton resonance but they are insensitive to scalar ones.
Resumo:
We investigate the scattering of heavy-light K and D mesons by nucleons at low energies. The short-distance part of the interaction is described by quark-gluon interchange and the longdistance part is described by a one-meson-exchange model that includes the contributions of vector (ρ, ω) and scalar (σ) mesons. The microscopic quark model incorporates a confining Coulomb potential extracted from lattice QCD simulations and a transverse hyperfine interaction consistent with a finite gluon propagator in the infrared. The derived effective meson-nucleon potential is used in a Lippmann-Schwinger equation to obtain s-wave phase shifts. Our final aim is to set up a theoretical framework that can be extended to finite temperatures and baryon densities. © 2010 American Institute of Physics.
Resumo:
Results are presented from a search for third-generation leptoquarks and scalar bottom quarks in a sample of proton-proton collisions at √s=7Tev collected by the CMS experiment at the LHC, corresponding to an integrated luminosity of 4.7 fb-1. A scenario where the new particles are pair produced and each decays to a b quark plus a tau neutrino or neutralino is considered. The number of observed events is found to be in agreement with the standard model prediction. Upper limits are set at 95% confidence level on the production cross sections. Leptoquarks with masses below ~450 GeV are excluded. Upper limits in the mass plane of the scalar quark and neutralino are set such that scalar bottom quark masses up to 410 GeV are excluded for neutralino masses of 50 GeV. © 2012 CERN for the benefit of CMS collaboration.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
In the present work the scattering of a fermion in the modified Hulthen potential is considered with a general vector and scalar and we solved the Dirac equation in the one-dimensional space. The transmission and reflection coefficients are reported. The bound-state solution is also given. The study shows the asymptotic behavior of the wave function in bound-state and scattering states solutions.