40 resultados para sacrifice principle

em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A precise fomulation of the strong Equivalence Principle is essential to the understanding of the relationship between gravitation and quantum mechanics. The relevant aspects are reviewed in a context including General Relativity but allowing for the presence of torsion. For the sake of brevity, a concise statement is proposed for the Principle: An ideal observer immersed in a gravitational field can choose a reference frame in which gravitation goes unnoticed. This statement is given a clear mathematical meaning through an accurate discussion of its terms. It holds for ideal observers (time-like smooth non-intersecting curves), but not for real, spatially extended observers. Analogous results hold for gauge fields. The difference between gravitation and the other fundamental interactions comes from their distinct roles in the equation of force.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Massive particles of spin 0 and 1 violate the equivalence principle (EP) at the tree level. on the other hand, if these particles are massless, they agree with the EP, which leads us to conjecture that from a semiclassical viewpoint massless particles, no matter what their spin, obey the EP. General relativity predicts a deflection angle of 2.63' for a nonrelativistic spinless massive boson passing close to the Sun, while for a massive vectorial boson of spin 1 the corresponding deflection is 2.62'.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In a recent paper, we raised a question on the validity of Feynman's prescription of disregarding the Pauli principle in intermediate states of perturbation theory. In the preceding Comment, Cavalcanti correctly pointed out that Feynman's prescription is consistent with the exact solution of the model that we used. This means that the Pauli principle does not necessarily apply to intermediate states. We discuss implications of this puzzling aspect.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the general relativistic description of gravitation, geometry replaces the concept of force. This is possible because of the universal character of free fall, and would break down in its absence. on the other hand, the teleparallel version of general relativity is a gauge theory for the translation group and, as such, describes the gravitational interaction by a force similar to the Lorentz force of electromagnetism, a non-universal interaction. Relying on this analogy it is shown that, although the geometric description of general relativity necessarily requires the existence of the equivalence principle, the teleparallel gauge approach remains a consistent theory for gravitation in its absence.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Regarding the Pauli principle in quantum field theory and in many-body quantum mechanics, Feynman advocated that Pauli's exclusion principle can be completely ignored in intermediate states of perturbation theory. He observed that all virtual processes (of the same order) that violate the Pauli principle cancel out. Feynman accordingly introduced a prescription, which is to disregard the Pauli principle in all intermediate processes. This ingenious trick is of crucial importance in the Feynman diagram technique. We show, however, an example in which Feynman's prescription fails. This casts doubts on the general validity of Feynman's prescription. [S1050-2947(99)04604-1].

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider the scattering of a photon by a weak gravitational field, treated as an external field, up to second order of the perturbation expansion. The resulting cross section is energy dependent which indicates a violation of Galileo's equivalence principle (universality of free fall) and, consequently, of the classical equivalence principle. The deflection angle theta for a photon passing by the sun is evaluated afterward and the likelihood of detecting Delta theta/theta(E) theta-theta(E)/theta(E) (where theta(E) is the value predicted by Einstein's geometrical theory for the light bending) in the foreseeable future, is discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Complex Kohn variational principle is applied to the numerical solution of the fully off-shell Lippmann-Schwinger equation for nucleon-nucleon scattering for various partial waves including the coupled S-3(1), D-3(1), channel. Analytic expressions are obtained for all the integrals in the method for a suitable choice of expansion functions. Calculations with the partial waves S-1(0), P-1(1), D-1(2), and S-3(1)-D-3(1) of the Reid soft core potential show that the method converges faster than other solution schemes not only for the phase shift but also for the off-shell t matrix elements. We also show that it is trivial to modify this variational principle in order to make it suitable for bound-state calculation. The bound-state approach is illustrated for the S-3(1)-D-3(1) channel of the Reid soft-core potential for calculating the deuteron binding, wave function, and the D state asymptotic parameters. (c) 1995 Academic Press, Inc.