12 resultados para rice blast disease

em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Pós-graduação em Agronomia - FEIS

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The fungus Rhizoctonia solani AG-1 IA causes sheath blight, one of the most important rice diseases worldwide. The first objective of this study was to analyse the genetic structure of R. solani AG-1 IA populations from three locations in the Iranian Caspian Sea rice agroecosystem. Three population samples of R. solani AG-1 IA isolates were obtained in 2006 from infected rice fields separated by 126-263km. Each field was sampled twice during the season: at the early booting stage and 45days later at the early mature grain stage. The genetic structure of these three populations was analysed using nine microsatellite loci. While the population genetic structure from Tonekabon and Amol indicated high gene flow, they were both differentiated from Rasht. The high gene flow between Tonekabon and Amol was probably due mainly to human-mediated movement of infested seeds. The second objective was to determine the importance of recombination. All three populations exhibited a mixed reproductive mode, including both sexual and asexual reproduction. No inbreeding was detected, suggesting that the pathogen is random mating. The third objective was to determine if genetic structure within a field changes over the course of a growing season. A decrease in the proportion of admixed genotypes from the early to the late season was detected. There was also a significant (P=0·002) increase in the proportion of loci under Hardy-Weinberg equilibrium. These two lines of evidence support the hypothesis that basidiospores can be a source of secondary inoculum. © 2012 BSPP.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sheath blight disease (SBD) on rice, caused by Rhizoctonia solani AG-1 IA, is one of the most devastating rice diseases on a global basis, including China (in Eastern Asia), the world's largest rice-growing country. We analyzed the population genetics of nine rice-infecting populations from China using nine microsatellite loci. One allopatric population from India (Southern Asia) was included in the analyses. In total, 300 different multilocus genotypes were found among 572 fungal isolates. Clonal fractions within rice fields were 16 to 95%, suggesting that sclerotia were a major source of primary inoculum in some fields. Global Phi(ST) statistics (Phi(ST) = 42.49; P <= 0.001) were consistent with a relatively high level of differentiation among populations overall; however, pairwise comparisons gave nonsignificant R(ST) values, consistent with contemporary gene flow among five of the populations. Four of these populations were located along the Yangtze River tributary network. Gene flow followed an isolation-by-distance model consistent with restricted long-distance migration. Historical migration rates were reconstructed and yielded values that explained the current levels of population subdivision. Except for one population which appeared to be strictly clonal, all populations showed evidence of a mixed reproductive mode, including both asexual and sexual reproduction. One population had a strictly recombining structure (all loci were in Hardy-Weinberg equilibrium) but the remaining populations from China and the one from India exhibited varying degrees of sexual reproduction. Six populations showed significant F(IS) values consistent with inbreeding.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The basidiomycetous fungus, Rhizoctonia solani anastomosis group (AG)-1 IA is a major pathogen in Latin America causing sheath blight (SB) of rice Particularly in Venezuela. the fungus also Causes banded leaf and sheath blight (BLSB) oil maize, which is considered all emerging disease problem where maize replaced traditional rice-cropping areas or is now planted in adjacent. fields Our goals in this study Were 10 elucidate (i) the effects of host specialization on gene flow between sympatric and allopatric rice and maize-infecting fungal populations and (ii) the reproductive mode of the fungus, looking for evidence of recombination in total, 375 isolates of R. solani AG1 IA sampled from three sympatric rice and maize fields in Venezuela (Porutuguesa State) and two allopatric rice fields from Colombia (Meta State) and Panama (Chiriqui State) were genotyped Using, 10 microsatellite loci Allopatric populations from Venezuela. Colombia. and Panama were significantly differentiated (Phi(ST), of 0 16 to 0 34). Partitioning of the genetic diversity indicated differentiation between sympatric populations from different host species, with 17% of the total genetic variation distributed between hosts while only 3 to 6% wits distributed geographically among the sympatric Venezuelan Fields We detected symmetrical historical migration between the rice- and the maize-infecting populations from Venezuela Rice- and maize-derived isolates were able to infect built rice and maize but were more aggressive Oil their original hosts, consistent with host specialization. Because the maize- and rice-infecting populations are still cross-pathogenic, we postulate that the genetic differentiation was relatively recent and mediated via a host shift. An isolation with nu.-ration analysis indicated that the maize-infecting population diverged from the rice-infecting population between 40 and 240 years ago Our findings also suggest that maize-infecting Populations have a mainly recombining reproductive system whereas the rice-infecting Populations have a Mixed reproductive system in Latin America

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ten polymorphic microsatellite loci were isolated and characterized from the rice- and maize-infecting Basidiomycete fungus Rhizoctonia solani anastomosis group AG-1 IA. All loci were polymorphic in two populations from Louisiana in USA and Venezuela. The total number of alleles per locus ranged from four to eight. All 10 loci were also useful for genotyping soybean-infecting R. solani AG-1 isolates from Brazil and USA. One locus, TC06, amplified across two other AG groups representing different species, showing species-specific repeat length polymorphism. This marker suite will be used to determine the global population structure of this important pathogenic fungus.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this study was to evaluate a simple molecular method of reverse transcriptase polymerase chain reaction (RT-PCR) to differentiate Newcastle disease virus strains according to their pathogenicity, in order to use it in molecular screening of Newcastle disease virus in poultry and free-living bird populations. Specific primers were developed to differentiate LaSota-LS-(vaccine strain) and Sao Joao do Meriti-SJM-strain (highly pathogenic strain). Chickens and pigeons were experimentally vaccinated/infected for an in vivo study to determine virus shedding in feces. Validation of sensitivity and specificity of the primers (SJM and LS) by experimental models used in the present study and results obtained in the molecular analysis of the primers by BLAST made it possible to generalize results. The development of primers that differentiate the level of pathogenicity of NDV stains is very important, mainly in countries where real-time RT-PCR is still not used as a routine test. These primers were able to determine the presence of the agent and to differentiate it according to its pathogenicity. © 2012 Springer Science+Business Media B.V.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)