7 resultados para reversible potential
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
A minimalist representation of protein structures using a Go- like potential for interactions is implemented to investigate the mechanisms of the domain swapping of p13suc1, a protein that exists in two native conformations: a monomer and a domain- swapped dimer formed by the exchange of a beta- strand. Inspired by experimental studies which showed a similarity of the transition states for folding of the monomer and the dimer, in this study we justify this similarity in molecular descriptions. When intermediates are populated in the simulations, formation of a domain- swapped dimer initiates from the ensemble of unfolded monomers, given by the fact that the dimer formation occurs at the folding/ unfolding temperature of the monomer ( T-f). It is also shown that transitions, leading to a dimer, involve the presence of two intermediates, one of them has a dimeric form and the other is monomeric; the latter is much more populated than the former. However, at temperatures lower than T-f, the population of intermediates decreases. It is argued that the two folded forms may coexist in absence of intermediates at a temperature much lower than T-f. Computational simulations enable us to find a mechanism, `` lock- and- dock'', for domain swapping of p13suc1. To explore the route toward dimer formation, the folding of unstructured monomers must be retarded by first locking one of the free ends of each chain. Then, the other free termini could follow and dock at particular regions, where most intrachain contacts are formed, and thus de. ne the transition states of the dimer. The simulations also showed that a decrease in the maximum distance between monomers increased their stability, which is explained based on confinement arguments. Although the simulations are based on models extracted from the native structure of the monomer and the dimer of p13suc1, the mechanism of the domain- swapping process could be general, not only for p13suc1.
Resumo:
Purine nucleoside phosphorylase (PNP) catalyzes the reversible phosphorolysis of nucleosides and deoxynucleosides, generating ribose 1-phosphate and the purine base, which is an important step of purine catabolism pathway. The lack of such an activity in humans, owing to a genetic disorder, causes T-cell impairment, and thus drugs that inhibit human PNP activity have the potential of being utilized as modulators of the immunological system to treat leukemia, autoimmune diseases, and rejection in organ transplantation. Besides, the purine salvage pathway is the only possible way for apicomplexan parasites to obtain the building blocks for RNA and DNA synthesis, which makes PNP from these parasites an attractive target for drug development against diseases such as malaria. Hence, a number of research groups have made efforts to elucidate the mechanism of action of PNP based on structural and kinetic studies. It is conceivable that the mechanism may be different for PNPs from diverse sources, and influenced by the oligomeric state of the enzyme in solution. Furthermore, distinct transition state structures can make possible the rational design of specific inhibitors for human and apicomplexan enzymes. Here, we review the current status of these research efforts to elucidate the mechanism of PNP-catalyzed chemical reaction, focusing on the mammalian and Plamodium falciparum enzymes, targets for drug development against, respectively, T-Cell and Apicomplexan parasites-mediated diseases.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)