152 resultados para response surface method
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
The present study sought biotensoactive production from soybean oil fry waste using Pseudomonas aeruginosa ATCC 10145 and Pseudomonas aeruginosa isolated from the soil of a petroleum station having undergone gasoline and diesel oil spills. The results of the experiments were analyzed using a complete factorial experimental design, investigating the concentration of soybean oil waste, ammonia sulfate and residual brewery yeast. Assays were performed in 250-mL Erlenmeyer beakers containing 50 mL of production medium, maintained on a rotary shaker at 200 rpm and a temperature of 30±1 °C for a 48-hour fermentation period. Biosurfactant production was monitored through the determination of rhamnose, surface tension and emulsification activity. The Pseudomonas aeruginosa ATCC 10145 strain and isolated Pseudomonas aeruginosa were able to reduce the surface tension of the initial mexlium from 61 mN/m to 32.5 mN/m and 30.0 mN/m as well as produce rhamnose at concentrations of 1.96 and 2.89 g/L with emulsification indices of 96% and 100%, respectively.
Resumo:
A synbiotic yoghurt based on a combination of soymilk and yacon water extract (from yacon root tubers) was developed as a novel food product fermented with a probiotic culture of Enterococcus faecium CRL 183 and Lactobacillus helveticus ssp jugurti 4l6. Response surface methodology (RSM) was used to optimize the independent variables soymilk protein concentration and percentage of yacon extract in the formulation through a Central Composite Rotatable Design (CCRD), consisting of a 22 factorial design with two levels (-1, +1), two central points (0) and four axial points (± a, 0) (0, ± α). The responses were assessed by consumer acceptance tests. The optimization indicated that a formulation with a soymilk protein concentration of 1.74g/L and 25.86% of yacon extract gave the best average values, 5.91 for the taste and 6.00 for the overall impression responses. The formulation with 40% of yacon extract and the same concentration of soymilk protein achieved similar acceptance values: taste (5.94) and overall impression (5.87), however, with the extra yacon, it probably had a greater content of prebiotic fructooligosaccharides. Consequently, both formulations may give useful functional foods, with sensory properties comparable with those of soy yoghurt (control formulation). Copyright © 2010 by New Century Health Publishers.
Resumo:
A study was carried out to elaborate response surface models using broiler performance data recovered from literature in order to predict performance and elaborate economic analyses. Nineteen studies published between 1995 and 2005 were retrieved using the systematic literature review method. Weight gain and feed conversion data were collected from eight studies that fulfilled the pre-established inclusion criteria, and a response surface model was adjusted using crude protein, environmental temperature, and age as independent variables. The models produced for weight gain (r² = 0.93) and feed conversion (r² = 0.85) were accurate, precise, and not biased. Protein levels, environmental temperature and age showed linear and quadratic effects on weight gain and feed conversion. There was no interaction between protein level and environmental temperature. Age and crude protein showed interaction for weight gain and feed conversion, whereas interaction between age and temperature was detected only for weight gain. It was possible to perform economic analyses to determine maximum profit as a function of the variables that were included in the model. It was concluded that the response surface models are effective to predict the performance of broiler chickens and allow the elaboration of economic analyses to optimize profit.
Resumo:
Response surface designs are usually described as if the treatments have been completely randomized to the experimental units. However, in practice there is often a structure to the units, implying the need for blocking. If, in addition, some factors are more difficult to vary between units than others, a multistratum structure arises naturally. We present a general strategy for constructing response surface designs in multistratum unit structures. Designs are constructed stratum by stratum, starting in the highest stratum. In each stratum a prespecified treatment set for the factors applied in that stratum is arranged to be nearly orthogonal to the units in the higher strata, allowing-for all the effects that have to be estimated. Three examples are given to show the applicability of the method and are also used to check the relationship of the final design to the choice of treatment set. Finally, some practical considerations in randomization are discussed.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The present study describes a methodology of dosage of glycerol kinase (GK) from baker's yeast. The standardization of the activity of the glycerol kinase from baker's yeast was accomplished using the diluted enzymatic preparation containing glycerol phosphate oxidase (GPO) and glycerol kinase. The mixture was incubated at 60 degrees C by 15 min and the reaction was stopped by the SDS solution addition. A first set of experiments was carried out in order to investigate the individual effect of temperature (7), pH and substrate concentration (S), on GK activity and stability. The pH and temperature stability tests showed that the enzyme presented a high stability to pH 6.0-8.0 and the thermal stability were completely maintained up to 50 degrees C during 1 h. The K(m) of the enzyme for glycerol was calculated to be 2 mM and V(max) to be 1.15 U/mL. In addition, modeling and optimization of reaction conditions was attempted by response surface methodology (RSM). Higher activity values will be attained at temperatures between 52 and 56 degrees C, pH around 10.2-10.5 and substrate concentrations from 150 to 170 mM.This low cost method for glycerol kinase dosage in a sequence of reactions is of great importance for many industries, like food, sugar and alcohol. RSM showed to be an adequate approach for modeling the reaction and optimization of reaction conditions to maximize glycerol kinase activity. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Biotechnological conversion of biomass into fuels and chemicals requires hydrolysis of the polysaccharide fraction into monomeric sugars. Hydrolysis can be performed enzymatically and with dilute or concentrate mineral acids. The present study used dilute sulfuric acid as a catalyst for hydrolysis of Eucalyptus grandis residue. The purpose of this paper was to optimize the hydrolysis process in a 1.41 pilot-scale reactor and investigate the effects of the acid concentration, temperature and residue/acid solution ratio on the hemicellulose removal and consequently on the production of sugars (xylose, glucose and arabinose) as well as on the formation of by-products (furfural, 5-hydroxymethylfurfural and acetic acid). This study was based on a model composition corresponding to a 2 3 orthogonal factorial design and employed the response surface methodology (RSM) to optimize the hydrolysis conditions, aiming to attain maximum xylose extraction from hemicellulose of residue. The considered optimum conditions were: H2SO4 concentration of 0.65%, temperature of 157 degrees C and residue/acid solution ratio of 1/8.6 with a reaction time of 20 min. Under these conditions, 79.6% of the total xylose was removed and the hydrolysate contained 1.65 g/l glucose, 13.65 g/l xylose, 1.55 g/l arabinose, 3.10 g/l acetic acid, 1.23 g/l furfural and 0.20 g/l 5-hydroxymethylfurfural. (c) 2006 Published by Elsevier Ltd.
Resumo:
We consider the problem of blocking response surface designs when the block sizes are prespecified to control variation efficiently and the treatment set is chosen independently of the block structure. We show how the loss of information due to blocking is related to scores defined by Mead and present an interchange algorithm based on scores to improve a given blocked design. Examples illustrating the performance of the algorithm are given and some comparisons with other designs are made. (C) 2000 Elsevier B.V. B.V. All rights reserved.
Resumo:
In this paper, we extend the use of the variance dispersion graph (VDG) to experiments in which the response surface (RS) design must be blocked. Through several examples we evaluate the prediction performances of RS designs in non-orthogonal block designs compared with the equivalent unblocked designs and orthogonally blocked designs. These examples illustrate that good prediction performance of designs in small blocks can be expected in practice. Most importantly, we show that the allocation of the treatment set to blocks can seriously affect the prediction properties of designs; thus, much care is needed in performing this allocation.
Resumo:
It is often necessary to run response surface designs in blocks. In this paper the analysis of data from such experiments, using polynomial regression models, is discussed. The definition and estimation of pure error in blocked designs are considered. It is recommended that pure error is estimated by assuming additive block and treatment effects, as this is more consistent with designs without blocking. The recovery of inter-block information using REML analysis is discussed, although it is shown that it has very little impact if thc design is nearly orthogonally blocked. Finally prediction from blocked designs is considered and it is shown that prediction of many quantities of interest is much simpler than prediction of the response itself.
Resumo:
Cyclodextrin glucanotransferase production from Bacillus clausii E16, a new bacteria isolated from Brazilian soil samples was optimized in shake-flask cultures. A 2 4 full-factorial central composite design was performed to optimize the culture conditions, using a response surface methodology the combined effect among the soluble starch concentration, the peptone concentration, the yeast extract concentration, and the initial pH value of the culture medium was investigated. The optimum concentrations of the components, determined by a 2(4) full-factorial central composite design, were 13.4 g/L soluble starch, 4.9 g/L peptone, 5.9 g/L yeast extract, and initial pH 10.1. Under these optimized conditions, the maximum cyclodextrin glucanotransferase activity was 5.9 U/mL after a 48-h fermentation. This yield was 68% higher than that obtained when the microorganism was cultivated in basal culture medium.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)