196 resultados para renal biological activity
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
The venom of Bothrops insidaris snake, known in Brazil as jararaca ilhoa, contains a variety of proteolytic enzymes such as a thrombin-like substance that is responsible for various pharmacological effects. B. insularis venom chromatography profile showed an elution of seven main fractions. The thrombin-like activity was detected in fractions I and 111, the latter being subjected to two other chromatographic procedures, so to say DEAE and Hi Trap Benzamidine. The purity degree of this fraction was confirmed by analytical reverse phase HPLC, which displayed only one main fraction confirmed by SDS-PAGE constituting fraction III. About 5 mu g of fraction III protein potentiated the secretion of insulin induced by 2.8mM of glucose in rats isolated pancreatic beta-cells treated; the increase being around 3-fold higher than its respective control. B. insidaris lectin (BiLec; 10 mu g/mL) was also studied as to its effect on the renal function of isolated perfused rat kidneys with the use of six Wistar rats. BiLec increased perfusion pressure (PP), renal vascular resistence (RVR), urinary flow (UF) and glomerular filtration rate (GFR). Sodium (%TNa+) and chloride tubular reabsorption (%TCl-) decreased at 120 min, without alteration in potassium transport. In conclusion, the thrombin-like substance isolated from B. insularis venom induced an increase in insulin secretion, in vitro, and transiently altered vascular, glomerular and tubular parameters in the isolated rat kidney. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Bothrops insularis venom contains a variety of substances presumably responsible for several pharmacological effects. We investigated the biochemical and biological effects of phospholipase A(2) protein isolated from B. insularis venom and the chromatographic profile showed 7 main fractions and the main phospholipase A(2) (PLA(2)) enzymatic activity was detected in fractions IV and V. Fraction IV was submitted to a new chromatographic procedure on ion exchange chromatography, which allowed the elution of 5 main fractions designated as lV-1 to IV-5, from which lV-4 constituted the main fraction. The molecular homogeneity of this fraction was characterized by high-performance liquid chromatography (HPLC) and demonstrated by mass spectrometry (MS), which showed a molecular mass of 13984.20 Da; its N-terminal sequence presented a high amino acid identity (up to 95%) with the PLA(2) of Bothrops jararaca and Bothrops asper. Phospholipase A(2) isolated from B. insularis (Bi PLA(2)) venom (10 mu g/mL) was also studied as to its effect on the renal function of isolated perfused kidneys of Wistar rats (n = 6). Bi PLA(2) increased perfusion pressure (PP), renal vascular resistance (RVR), urinary flow (UF) and glomerular filtration rate (GFR). Sodium (%TNa+) and chloride tubular reabsorption (%TCl-) decreased at 120 min, without alteration in potassium transport. In conclusion, PLA(2) isolated from B. insularis venom promoted renal alterations in the isolated perfused rat kidney. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Astilbin was isolated in high yield from Dimorphandra mollis, and its insecticidal and growth inhibiting activity by stomach ingestion were evaluated against Anticarsia gemmatalis and Spodoptera frugiperda. The insecticidal activity of astilbin, the weight reduction of the larval phase and the prolongation of the larval and pupal phases were verified for both species. Astilbin was identified on the base of its NMR, MS and physical data. (C) 2002 Society of Chemical Industry.
Resumo:
(1) Venom pools from Bothrops neuwiedi (Bn) and from two subspecies, namely Bothrops neuwiedi pauloensis (Bnp) and Bothrops neuwiedi urutu (Bnu), collected in the States of São Paulo (SP) and Minas Gerais (MG), Brazil, were electrophoretically examined. Basic toxins with different isoelectric points were identified in the venom collected in São Paulo (BnSP). These toxins were absent in the corresponding pools from Minas Gerais (BnMG, BnpMG and BnuMG). (2) BnSP, but not BnMG, BnpMG or BnuMG, showed two myotoxins (pI congruent to 8.6 and 8.8, respectively) which were isolated by ion-exchange chromatography on CM-Sepharose. (3) From BnMG, three myotoxic isoforms (pI congruent to 8.2 and M-r = 13600) were isolated by chromatography on CM-Sepharose followed by reversed-phase high-performance liquid chromatography. (4) the chemical and biological characterization of these toxins showed a high similarity with the Lys-49 myotoxins from other bothropic venoms. (5) Doses up to 5 LD50 (i.p.) of p-bromophenacyl bromide alkylated BnSP-7 caused a total loss of lethality in 18-22-g mice, thus indicating that the LD50 was increased by greater than 5-fold. At this dose myotoxicity was also not detectable, but the edematogenic activity on the rat paw apparently did not change. (C) 1998 Elsevier B.V. All rights reserved.
Resumo:
Inflammatory peptides display different types of post-transcriptional modifications, such as C-terminal amidation, that alter their biological activity. Here we describe the structural and molecular dynamics features of the mast cell degranulating peptide, eumenine mastoparan-AF (EMP-AF-NH2), found in the venom of the solitary wasp, and of its carboxyl-free C-terminal form (EMP-AF-COO-) characterized by a reduced activity. Circular dichroism indicates that both peptides switch from a random coil conformation in water to a helical structure in TFE and SDS micelles. NMR data, in 30% TFE, reveal that the two peptides fold into an alpha-helix spanning most of their length, while they differ in terms of molecular rigidity. To understand the origins of the conformational flexibility observed in the case of EMP-AF-COO-, a 5 ns MD simulation was carried out for each peptide, in an explicit water/TFE environment. The results show that the two peptides differ in an H-bond between Leu14 NH2 and the backbone carbonyl of Ile11. The loss of that H-bond in EMP-AF-COO- leads to a significant modification of its structural dynamics. In fact, as evidenced by essential dynamics analysis, while EMP-AF-NH2 exists mainly as a rigid structure, EMP-AF-COO- presents two helical stretches that fluctuate in some sort of independent fashion. We conclude that the diverse biological activity of the two peptides is not simply due to the reduction of the net positive charge, as generally suggested, but also to a structural perturbation of the amphipathic alpha-helix that affects their ability to perturb the cell membrane.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Plant lectins, especially those purified from species of the Legummosae family, represent the best studied group of carbohydrate-binding proteins. The legume lectins from Diocleinae subtribe are highly similar proteins that present significant differences in the potency/ efficacy of their biological activities. The structural studies of the interactions between lectins and sugars may clarify the origin of the distinct biological activities observed in this high similar class of proteins. In this way, this work presents a crystallographic study of the ConM and CGL (agglutinins from Canavalia maritima and Canavalia gladiata, respectively) in the following complexes: ConM/ CGL:Man(alpha 1-2)Man(alpha 1-0)Me, ConM/CGL:Man(alpha 1-O)Man(alpha 1-O)Me and ConM/CGL:Man(alpha 1-4)Man(alpha 1-O)Me, which crystallized in different conditions and space group from the native proteins.The structures were solved by molecular replacement, presenting satisfactory values for R-factor and R-factor. Comparisons between ConM, CGL and ConA (Canavalia ensiformis lectin) binding mode with the dimannosides in subject, presented different interactions patterns, which may account for a structural explanation of the distincts biological properties observed in the lectins of Diocleinae subtribe. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
Acidic phospholipase A(2) (PLA(2)) isoforms in snake venoms, particularly those from Bothrops jararacussu, have not been characterized. This article reports the isolation and partial biochemical, functional and structural characterization of four acidic PLA(2)s (designated SIIISPIIA, SIIISPIIB, SIIISPIIIA and SIIISPIIIB) from this venom. The single chain purified proteins contained 122 amino acid residues and seven disulfide bonds with approximate molecular masses of 15 kDa and isoelectric points of 5.3. The respective N-terminal sequences were: SIIISPIIA-SLWQFGKMIDYVMGEEGAKS; SIIISPIIB-SLWQFGKMIFYTGKNEPVLS; SIIISPIIIA-SLWQFGKMILYVMGGEGVKQ and SIIISPIIIB-SLWQFGKMIFYEMTGEGVL. Crystals of the acidic protein SIIISPIIIB diffracted beyond 1.8 Angstrom resolution. These crystals are monoclinic with unit cell dimensions of a = 40.1 Angstrom, b = 54.2 Angstrom and c = 90.7 Angstrom. The crystal structure has been refined to a crystallographic residual of 16.1% (R-free = 22.9%). Specific catalytic activity (U/mg) of the isolated acidic PLA(2)s were SIIISPIIA = 290.3 U/mg; SIIISPIIB = 279.0 U/mg; SIIISPIIIA = 270.7 U/mg and SIIISPIIIB = 96.5 U/mg. Although their myotoxic activity was low, SIIISPIIA, SIIISPIIIB and SIIISPIIIA showed significant anticoagulant activity. However, there was no indirect hemolytic activity. SIIISPIIIB revealed no anticoagulant, but presented indirect hemolytic activity. With the exception of SIIISPIIIB, which inhibited platelet aggregation, all the others were capable of inducing time-independent edema. Chemical modification with 4-bromophenacyl bromide did not inhibit the induction of edema, but did suppress other activities. (C) 2003 Editions scientifiques et medicales Elsevier SAS. All rights reserved.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Galectin-1 (Gal-1), the prototype of a family of β -galactoside-binding proteins, has been shown to attenuate experimental acute and chronic inflammation. In view of the fact that endothelial cells (ECs), but not human polymorphonuclear leukocytes (PMNs), expressed Gal-1 we tested here the hypothesis that the protein could modulate leukocyte-EC interaction in inflammatory settings. In vitro, human recombinant (hr) Gal-1 inhibited PMN chemotaxis and trans-endothelial migration. These actions were specific as they were absent if Gal-1 was boiled or blocked by neutralizing antiserum. In vivo, hrGal-1 (optimum effect at 0.3 μg equivalent to 20 pmol) inhibited interleukin-1β-induced PMN recruitment into the mouse peritoneal cavity. Intravital microscopy analysis showed that leukocyte flux, but not their rolling velocity, was decreased by an anti-inflammatory dose of hrGal-1. Binding of biotinylated Gal-1 to resting and post-adherent human PMNs occurred at concentrations inhibitory in the chemotaxis and transmigration assays. In addition, the pattern of Gal-1 binding was differentially modulated by PMN or EC activation. In conclusion, these data suggest the existence of a previously unrecognized function of Gal-1, that is inhibition of leukocyte rolling and extravasation in experimental inflammation. It is possible that endogenous Gal-1 may be part of a novel anti-inflammatory loop in which the endothelium is the source of the protein and the migrating PMNs the target for its anti-inflammatory action.