6 resultados para relative survival

em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The aim of this study was to evaluate the survival rate, the intestinal microbiota, the mucosal integrity, and the carcass quality of juvenile Nile Tilapia, Oreochromis niloticus, after 80 days being fed on a diet containing probiotic additive (Bacillus cereus 4.0×108 CFUg-1 and Bacillus subtilis 4.0×108 CFUg-1), at the ratio of 4g/kg of pelleted feed. The completely randomized design with two treatments was used: one control group and one group fed on the mentioned diet. The evaluation of survival rate, the intestinal microbiota analysis by microbiological culture, histomorphometrical analysis of intestinal mucosa and chemical analysis of carcass was performed. The results showed that tilapias from the treated group had higher relative survival rate (P<0.05) than the control group, higher number of colony-forming units (P<0.05) regarding intestinal colonization by B. cereus and B. subtilis, and higher rates of intestinal mucosal integrity (P<0.05), evaluated by histomorphometry. As for the latter, the group being fed on feed with probiotic additive was observed to have higher and larger villi, besides having a higher number of goblet cells than the control group. Concerning the carcass quality, the results showed that there was positive interference (P<0.05) of the probiotic on the treated group in comparison to the control group as in regard to levels of protein and ether extract. These results allow the inference that the supplementation with probiotic, as tested in this experiment, led to the intestinal colonization by beneficial bacteria and resulted in higher relative survival rate, decreased the mucosal desquamation and helped in the increase of the number of goblet cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Charqui meats were prepared in laboratory conditions in order to carry out experiments to observe the possibility of development of enterotoxigenic Staphylococcus aureus and Clostridium bottilinum proteolytic type B spores and their toxins. Results demonstrated that the harsh processing conditions, high salt concentration, relative high temperature, a, values, inhibited the growth of both bacteria. Under our experimental conditions, S. aureus would survive throughout the sequence of salting steps i.e. brine followed by rock salting and the sunshine drying step. However, at final a(w) value of 0.70-0.75 would create conditions to inhibit its development. The other experiment revealed that C. botulinum spores germination also was impaired because of these low a(w) values. Under these conditions, charqui meats revealed to be safe products in relation to toxins from both enterotoxigenic S. aureus and C. botulinum. (C) 2003 Elsevier B.V. Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Melanose, caused by Diaporthe citri, produces reddish brown lesions on the fruit, leaves, and twigs of citrus trees, and greatly reduces the marketability of fresh fruit. Most of the inoculum is produced in pycnidia on dead twigs in the tree canopy, which exude large numbers of conidia in slimy masses. In this study, detached twigs inoculated with conidia were readily colonized and produced large numbers of pycnidia within 30 to 40 days when they were soaked 3 to 4 h on alternate days. Conidial production was measured by wetting twigs in a rain tower periodically and collecting the conidia in the runoff water. Production began after 80 days and continued for nearly 300 days. In other experiments, production of mature pycnidia on detached twigs was greatest at 94 to 100% relative humidity (RH) and at 28 degrees C. Low RH and temperature, however, favored survival of conidia in exuded masses on twigs. In the field, colonization of detached twigs by D. citri was high in rainy season, moderate in spring and early fall, and minimal in late fall and winter. Twig colonization was positively related to the number of rain days and average temperature, but not to total rainfall. In another experiment, inoculated twigs placed in the tree canopy developed pycnidia and then produced conidial masses for about 200 days. D. citri is a serious pathogen, but a weak parasite, that survives primarily by colonization and reproduction on dead twigs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Seed dispersal effectiveness (SDE) is a conceptual framework that aims at quantifying the contribution of seed dispersal vectors to plant fitness. While it is well recognized that diplochorous dispersal systems, characterized by two successive dispersal steps performed by two different vectors (Phase I=primary seed dispersal and Phase II=secondary seed dispersal) which are common in temperate and tropical regions, little attention has been given to distinguishing the relative contribution of one-phase and two-phase dispersal to overall SDE. This conceptual gap probably results from the lack of a clear methodology to include Phase II dispersal into the calculation of SDE and to quantify its relative contribution. We propose a method to evaluate the relative contribution of one-phase and two-phase dispersal to SDE and determine whether two seed dispersers are better than one. To do so, we used the SDE landscape and an extension of the SDE landscape, the Phase II effect landscape, which measures the direction and magnitude of the Phase II dispersal effect on overall SDE. We used simulated and empirical data from a diplochorous dispersal system in the Peruvian Amazon to illustrate this new approach. Our approach provides the relative contribution of one-phase SDE (SDE1) and two-phase SDE (SDE2) to overall SDE and quantifies how much SDE changes with the addition of Phase II dispersal. Considering that the seed dispersal process is context dependent so that Phase II depends on Phase I, we predict the possible range of variation of SDE according to the variation of the probability of Phase II dispersal. In our specific study system composed of two primate species as primary dispersal vectors and different species of dung beetles as secondary dispersal vectors, the relative contribution of SDE1 and SDE2 to overall SDE varied between plant species. We discuss the context dependency of the Phase II dispersal and the potential applications of our approach. This extension to the conceptual framework of SDE enables quantitative evaluation of the effect of Phase II dispersal on plant fitness and can be easily adapted to other biotic and/or abiotic diplochorous dispersal systems.