54 resultados para relational database
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
Genome sequencing efforts are providing us with complete genetic blueprints for hundreds of organisms. We are now faced with assigning, understanding, and modifying the functions of proteins encoded by these genomes. DBMODELING is a relational database of annotated comparative protein structure models and their metabolic pathway characterization, when identified. This procedure was applied to complete genomes such as Mycobacteritum tuberculosis and Xylella fastidiosa. The main interest in the study of metabolic pathways is that some of these pathways are not present in humans, which makes them selective targets for drug design, decreasing the impact of drugs in humans. In the database, there are currently 1116 proteins from two genomes. It can be accessed by any researcher at http://www.biocristalografia.df.ibilce.unesp.br/tools/. This project confirms that homology modeling is a useful tool in structural bioinformatics and that it can be very valuable in annotating genome sequence information, contributing to structural and functional genomics, and analyzing protein-ligand docking.
Resumo:
Cancer is the second main cause of death in Brazil, and according to statistics disclosed by INCA - National Cancer Institute 466,730 new cases of the disease are forecast for 2008. The storage and analysis of tumour tissues of various types and patients' clinical data, genetic profiles, characteristics of diseases and epidemiological data may provide more precise diagnoses, providing more effective treatments with higher chances for the cure of cancer. In this paper we present a Web system with a client-server architecture, which manages a relational database containing all information relating to the tumour tissue and their location in freezers, patients, medical forms, physicians, users, and others. Furthermore, it is also discussed the software engineering used to developing the system.
Resumo:
Background: The functional and structural characterisation of enzymes that belong to microbial metabolic pathways is very important for structure-based drug design. The main interest in studying shikimate pathway enzymes involves the fact that they are essential for bacteria but do not occur in humans, making them selective targets for design of drugs that do not directly impact humans.Description: The ShiKimate Pathway DataBase (SKPDB) is a relational database applied to the study of shikimate pathway enzymes in microorganisms and plants. The current database is updated regularly with the addition of new data; there are currently 8902 enzymes of the shikimate pathway from different sources. The database contains extensive information on each enzyme, including detailed descriptions about sequence, references, and structural and functional studies. All files (primary sequence, atomic coordinates and quality scores) are available for downloading. The modeled structures can be viewed using the Jmol program.Conclusions: The SKPDB provides a large number of structural models to be used in docking simulations, virtual screening initiatives and drug design. It is freely accessible at http://lsbzix.rc.unesp.br/skpdb/. © 2010 Arcuri et al; licensee BioMed Central Ltd.
Resumo:
The multi-relational Data Mining approach has emerged as alternative to the analysis of structured data, such as relational databases. Unlike traditional algorithms, the multi-relational proposals allow mining directly multiple tables, avoiding the costly join operations. In this paper, is presented a comparative study involving the traditional Patricia Mine algorithm and its corresponding multi-relational proposed, MR-Radix in order to evaluate the performance of two approaches for mining association rules are used for relational databases. This study presents two original contributions: the proposition of an algorithm multi-relational MR-Radix, which is efficient for use in relational databases, both in terms of execution time and in relation to memory usage and the presentation of the empirical approach multirelational advantage in performance over several tables, which avoids the costly join operations from multiple tables. © 2011 IEEE.
Resumo:
Multi-relational data mining enables pattern mining from multiple tables. The existing multi-relational mining association rules algorithms are not able to process large volumes of data, because the amount of memory required exceeds the amount available. The proposed algorithm MRRadix presents a framework that promotes the optimization of memory usage. It also uses the concept of partitioning to handle large volumes of data. The original contribution of this proposal is enable a superior performance when compared to other related algorithms and moreover successfully concludes the task of mining association rules in large databases, bypass the problem of available memory. One of the tests showed that the MR-Radix presents fourteen times less memory usage than the GFP-growth. © 2011 IEEE.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
A arborização urbana em calçadas é fundamental para manutenção da qualidade de vida, proporcionando conforto aos habitantes das cidades. Contudo, existem problemas causados principalmente pela falta de planejamento na implantação e no manejo da arborização. O objetivo do presente trabalho foi a criação de um banco de dados relacional para auxiliar no cadastro informatizado, na avaliação e no manejo da arborização de vias públicas. Apresenta resultados sobre a valoração de indivíduos cadastrados, cálculo da diversidade entre os bairros, introdução de fotos digitais e relatórios para manejo em interface amigável, podendo servir de instrumento à manutenção da arborização e de vetor de comunicação para educação ambiental.
Resumo:
Structural characterization of enzymes that belong to microbial metabolic pathways is very important for structure-based drug design since some of these proteins may be present in the bacterial genome, but absent in humans. Thus, metabolic pathways became potential targets for drug design. The motivation of this work is the fact that Mycobacterium tuberculosis is the cause of the deaths of millions of people in the world, so that the structural characterization of protein targets to propose new drugs has become essential. DBMODELING is a relational database, created to highlight the importance of methods of molecular modeling applied to the Mycobacterium tuberculosis genome with the aim of proposing protein-ligand docking analysis. There are currently more than 300 models for proteins from Mycobacterium tuberculosis genome in the database. The database contains a detailed description of the reaction catalyzed by each enzyme and their atomic coordinates. Information about structures, a tool for animated gif image, a table with a specification of the metabolic pathway, modeled protein, inputs used in modeling, and analysis methods used in this project are available in the database for download. The search tool can be used for reseachers to find specific pathways or enzymes.
Resumo:
Variations in the phenotypic expression of heterozygous beta thalassemia reflect the formation of different populations. To better understand the profile of heterozygous beta-thalassemia of the Brazilian population, we aimed at establishing parameters to direct the diagnosis of carriers and calculate the frequency from information stored in an electronic database. Using a Data Mining tool, we evaluated information on 10,960 blood samples deposited in a relational database. Over the years, improved diagnostic technology has facilitated the elucidation of suspected beta thalassemia heterozygote cases with an average frequency of 3.5% of referred cases. We also found that the Brazilian beta thalassemia trait has classic increases of Hb A2 and Hb F (60%), mainly caused by mutations in beta zero thalassemia, especially in the southeast of the country.
Resumo:
The analysis of large amounts of data is better performed by humans when represented in a graphical format. Therefore, a new research area called the Visual Data Mining is being developed endeavoring to use the number crunching power of computers to prepare data for visualization, allied to the ability of humans to interpret data presented graphically.This work presents the results of applying a visual data mining tool, called FastMapDB to detect the behavioral pattern exhibited by a dataset of clinical information about hemoglobinopathies known as thalassemia. FastMapDB is a visual data mining tool that get tabular data stored in a relational database such as dates, numbers and texts, and by considering them as points in a multidimensional space, maps them to a three-dimensional space. The intuitive three-dimensional representation of objects enables a data analyst to see the behavior of the characteristics from abnormal forms of hemoglobin, highlighting the differences when compared to data from a group without alteration.
Resumo:
Making diagnoses in oral pathology are often difficult and confusing in dental practice, especially for the lessexperienced dental student. One of the most promising areas in bioinformatics is computer-aided diagnosis, where a computer system is capable of imitating human reasoning ability and provides diagnoses with an accuracy approaching that of expert professionals. This type of system could be an alternative tool for assisting dental students to overcome the difficulties of the oral pathology learning process. This could allow students to define variables and information, important to improving the decision-making performance. However, no current open data management system has been integrated with an artificial intelligence system in a user-friendly environment. Such a system could also be used as an education tool to help students perform diagnoses. The aim of the present study was to develop and test an open case-based decisionsupport system.Methods: An open decision-support system based on Bayes' theorem connected to a relational database was developed using the C++ programming language. The software was tested in the computerisation of a surgical pathology service and in simulating the diagnosis of 43 known cases of oral bone disease. The simulation was performed after the system was initially filled with data from 401 cases of oral bone disease.Results: the system allowed the authors to construct and to manage a pathology database, and to simulate diagnoses using the variables from the database.Conclusion: Combining a relational database and an open decision-support system in the same user-friendly environment proved effective in simulating diagnoses based on information from an updated database.
Resumo:
DBMODELING is a relational database of annotated comparative protein structure models and their metabolic, pathway characterization. It is focused on enzymes identified in the genomes of Mycobacterium tuberculosis and Xylella fastidiosa. The main goal of the present database is to provide structural models to be used in docking simulations and drug design. However, since the accuracy of structural models is highly dependent on sequence identity between template and target, it is necessary to make clear to the user that only models which show high structural quality should be used in such efforts. Molecular modeling of these genomes generated a database, in which all structural models were built using alignments presenting more than 30% of sequence identity, generating models with medium and high accuracy. All models in the database are publicly accessible at http://www.biocristalografia.df.ibilce.unesp.br/tools. DBMODELING user interface provides users friendly menus, so that all information can be printed in one stop from any web browser. Furthermore, DBMODELING also provides a docking interface, which allows the user to carry out geometric docking simulation, against the molecular models available in the database. There are three other important homology model databases: MODBASE, SWISSMODEL, and GTOP. The main applications of these databases are described in the present article. © 2007 Bentham Science Publishers Ltd.
Resumo:
The second main cause of death in Brazil is cancer, and according to statistics disclosed by National Cancer Institute from Brazil (INCA) 466,730 new cases of cancer are forecast for 2008. The analysis of tumour tissues of various types and patients' clinical data, genetic profiles, characteristics of diseases and epidemiological data may lead to more precise diagnoses, providing more effective treatments. In this work we present a clinical decision support system for cancer diseases, which manages a relational database containing information relating to the tumour tissue and their location in freezers, patients and medical forms. Furthermore, it is also discussed some problems encountered, as database integration and the adoption of a standard to describe topography and morphology. It is also discussed the dynamic report generation functionality, that shows data in table and graph format, according to the user's configuration. © ACM 2008.
Resumo:
Pós-graduação em Ciência da Computação - IBILCE