120 resultados para recursive partitioning algorithm
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
A low-cost computer procedure to determine the orbit of an artificial satellite by using short arc data from an onboard GPS receiver is proposed. Pseudoranges are used as measurements to estimate the orbit via recursive least squares method. The algorithm applies orthogonal Givens rotations for solving recursive and sequential orbit determination problems. To assess the procedure, it was applied to the TOPEX/POSEIDON satellite for data batches of one orbital period (approximately two hours), and force modelling, due to the full JGM-2 gravity field model, was considered. When compared with the reference Precision Orbit Ephemeris (POE) of JPL/NASA, the results have indicated that precision better than 9 m is easily obtained, even when short batches of data are used. Copyright (c) 2007.
Resumo:
Multi-relational data mining enables pattern mining from multiple tables. The existing multi-relational mining association rules algorithms are not able to process large volumes of data, because the amount of memory required exceeds the amount available. The proposed algorithm MRRadix presents a framework that promotes the optimization of memory usage. It also uses the concept of partitioning to handle large volumes of data. The original contribution of this proposal is enable a superior performance when compared to other related algorithms and moreover successfully concludes the task of mining association rules in large databases, bypass the problem of available memory. One of the tests showed that the MR-Radix presents fourteen times less memory usage than the GFP-growth. © 2011 IEEE.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This paper presents a method for automatic identification of dust devils tracks in MOC NA and HiRISE images of Mars. The method is based on Mathematical Morphology and is able to successfully process those images despite their difference in spatial resolution or size of the scene. A dataset of 200 images from the surface of Mars representative of the diversity of those track features was considered for developing, testing and evaluating our method, confronting the outputs with reference images made manually. Analysis showed a mean accuracy of about 92%. We also give some examples on how to use the results to get information about dust devils, namelly mean width, main direction of movement and coverage per scene. (c) 2012 Elsevier Ltd. All rights reserved.
Resumo:
This paper proposes a methodology for automatic extraction of building roof contours from a Digital Elevation Model (DEM), which is generated through the regularization of an available laser point cloud. The methodology is based on two steps. First, in order to detect high objects (buildings, trees etc.), the DEM is segmented through a recursive splitting technique and a Bayesian merging technique. The recursive splitting technique uses the quadtree structure for subdividing the DEM into homogeneous regions. In order to minimize the fragmentation, which is commonly observed in the results of the recursive splitting segmentation, a region merging technique based on the Bayesian framework is applied to the previously segmented data. The high object polygons are extracted by using vectorization and polygonization techniques. Second, the building roof contours are identified among all high objects extracted previously. Taking into account some roof properties and some feature measurements (e. g., area, rectangularity, and angles between principal axes of the roofs), an energy function was developed based on the Markov Random Field (MRF) model. The solution of this function is a polygon set corresponding to building roof contours and is found by using a minimization technique, like the Simulated Annealing (SA) algorithm. Experiments carried out with laser scanning DEM's showed that the methodology works properly, as it delivered roof contours with approximately 90% shape accuracy and no false positive was verified.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
We present a new algorithm for Reverse Monte Carlo (RMC) simulations of liquids. During the simulations, we calculate energy, excess chemical potentials, bond-angle distributions and three-body correlations. This allows us to test the quality and physical meaning of RMC-generated results and its limitations. It also indicates the possibility to explore orientational correlations from simple scattering experiments. The new technique has been applied to bulk hard-sphere and Lennard-Jones systems and compared to standard Metropolis Monte Carlo results. (C) 1998 American Institute of Physics.
Resumo:
This work summarizes the HdHr group of Hermitian integration algorithms for dynamic structural analysis applications. It proposes a procedure for their use when nonlinear terms are present in the equilibrium equation. The simple pendulum problem is solved as a first example and the numerical results are discussed. Directions to be pursued in future research are also mentioned. Copyright (C) 2009 H.M. Bottura and A. C. Rigitano.
Resumo:
The Capacitated Centered Clustering Problem (CCCP) consists of defining a set of p groups with minimum dissimilarity on a network with n points. Demand values are associated with each point and each group has a demand capacity. The problem is well known to be NP-hard and has many practical applications. In this paper, the hybrid method Clustering Search (CS) is implemented to solve the CCCP. This method identifies promising regions of the search space by generating solutions with a metaheuristic, such as Genetic Algorithm, and clustering them into clusters that are then explored further with local search heuristics. Computational results considering instances available in the literature are presented to demonstrate the efficacy of CS. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
This article presents a well-known interior point method (IPM) used to solve problems of linear programming that appear as sub-problems in the solution of the long-term transmission network expansion planning problem. The linear programming problem appears when the transportation model is used, and when there is the intention to solve the planning problem using a constructive heuristic algorithm (CHA), ora branch-and-bound algorithm. This paper shows the application of the IPM in a CHA. A good performance of the IPM was obtained, and then it can be used as tool inside algorithm, used to solve the planning problem. Illustrative tests are shown, using electrical systems known in the specialized literature. (C) 2005 Elsevier B.V. All rights reserved.
Resumo:
The paper presents an extended genetic algorithm for solving the optimal transmission network expansion planning problem. Two main improvements have been introduced in the genetic algorithm: (a) initial population obtained by conventional optimisation based methods; (b) mutation approach inspired in the simulated annealing technique, the proposed method is general in the sense that it does not assume any particular property of the problem being solved, such as linearity or convexity. Excellent performance is reported in the test results section of the paper for a difficult large-scale real-life problem: a substantial reduction in investment costs has been obtained with regard to previous solutions obtained via conventional optimisation methods and simulated annealing algorithms; statistical comparison procedures have been employed in benchmarking different versions of the genetic algorithm and simulated annealing methods.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)