35 resultados para radionucléides
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
This study reports the nature and extent of open-system interaction between groundwater and a weathered profile developed in the high grade thorium and REE ore body in Morro do Ferro, Pocos de Caldas plateau. The radioelement mobility in the shallow oxidizing environment was considered by using chemical data in conjunction with U-234/U-238, Ra-226/Th-230, Th-230/U-234, Th-228/Th-232, Ra-228/Th-232 and Th-230/Ra-228 activity ratios (AR's) for borehole spoil and groundwater samples.Recharging groundwater from the studied borehole has low salinity values, with total dissolved solids content of 14.7 mg/l and total ionic strength of 0.00018. The ratio of the weight of dissolved radioelement per unit volume of solution to the weight of radioelement in solid phase per unit weight of solid phase showed that the radioelement solubility in the studied waters varied according to the following order: radium> uranium >thorium.U-234/U-238 AR's less than 1 were measured in solid phase and can justify the enhancement of U-234 in solution. Ra-226/Th-230 AR's greater than 1 and Th-230/U-234 AR'S less than 1 were evaluated between 20 and 27 m in depth, where a 2.1-m thick magnetite dike was intersected. These ratios could be justified by deposition of U and Ra associated with Fe-Mn oxides and kaolinite, where mineral saturation indices evaluated from the available data confirm this possibility. Covariations among disequilibria involving Th-228/(228) Ra and Ra-228/Th-232 AR's showed the preferential removal of Ra-228 relative to Tn isotopes, Th-228 and Th-232. The recent deposition of radium within the timescale of at least the last 35 years also is suggested. (C) 1998 Elsevier B.V. Ltd. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This study proposes a method for decontamination of acid drainage water from a uranium mine, as an alternative process to lime treatment. The research embodied the recovery of uranium with an ion-exchange resin, treatment of effluent resin with lime, or with inorganic adsorbents and biosorbents. The uranium decontamination level using the resin process was 94% and allowed the recovery of this element as a commercial product. Among the inorganic adsorbents studied, phosphogypsum was effective for Ra-226, Ra-228, and Pb-210 removal. Among the biosorbents, Sargassum sp.was superior in relation to its specific capacity to accumulate and remove Ra-226.
Resumo:
Inorganic phosphate fertilizers may contain radionuclides, heavy metals and fluorine. This paper presents the possible environmental hazards from Tapira phosphate rocks and their (by) products (Brazil) utilized as phosphate fertilizers. The activity concentration of U-238, U-234, Ra-226 and K-40 in Tapira phosphate rocks is within the world range for these rock types. The Th-232 activity concentration is higher than the mean reported in phosphate rocks. A value of 2184 nGy h(-1) was obtained for the exposure dose rate in Tapira phosphate deposit area, which is indicative of a high background radiation area. The flotation-separation process causes the incorporation of no more than 9%, 11 % and 24% of radionuclides, heavy metals and fluorine, respectively, into the phosphate concentrate. The radionuclides and heavy metals existing in phosphate fertilizers applied in Brazilian crops according to the recommended rates, do not raise their concentration in soils to harmful levels. (C) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Radionuclides take a major role in guidelines of environmental agencies/national organizations of countries worldwide. In Brazil, CNEN-Comissão Nacional de Energia Nuclear is responsible for managing all subjects related to nuclear energy in the country. Thus, laboratories employing radionuclides for the development of their activities must submit a Radioprotection Plan to CNEN in order to get an operation license. Such plan must indicate that the laboratory is exempt of risks to the people involved and designed to fit all related environmental aspects. This was the case of LABIDRO-Hydrochemical and Isotopes Laboratory that belongs to IGCE-Geosciences and Exact Sciences Institute from UNESP - the University of the State of São Paulo Júlio de Mesquita Filho, located at Rio Claro city, São Paulo State, Brazil. The total monthly activity of the radionuclides utilized during the laboratorial activities held at LABIDRO corresponds to 0.01 μCi. This paper describes all information provided by LABIDRO in order to get the CNEN license. The LABIDRO plan also showed the expected radioactive waste released when the experiments take place and CNEN decided that it fits the guidelines established by Brazilian legislation. Therefore, LABIDRO received its license for utilizing radionuclides, which is valid until September 2016. © 2013 WIT Press.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This investigation was carried out within the Parana sedimentary basin and involved the sampling of 78 pumped tubular wells for evaluating the hydrochemistry and radioactivity due to the nuclides (238)U, (234)U, (222)Ra, (226)Ra, and (228)Ra in the Brazilian part of Guarani aquifer. Several significant correlations were found involving the geostatic pressure, for instance, specific flow rate, CO(3)(2-), SO(4)(2-) temperature, dissolved O(2), free CO(2), pH, redox potential Eh, conductivity, Na, HCO(3)-, CO(3)(2-) , SI(calcite), Cl(-), F(-), SO(4)(2-), and B. Carbonates precipitation was evidenced by inverse correlation between CO(3)(2-) and Ca, Mg, Sr, and Ba, whereas Na exhibited an opposite trend, dissolving rather than precipitating with increasing CO(3)(2-) concentration. An inverse correlation between 3 and K was found, possibly related to the increasing tendency of K to recombine with the thickness of the clayey layers. HCO(3)-played an important role on Na, Ca, Mg, and Sr dissolution. The dissolved U content and (234)U/(238)U activity ratio data were plotted on a two-dimensional diagram that was successfully utilized on identifying an unreported zone of U accumulation, though not necessarily of economic size and grade. The variability in chemical and radionuclides data indicated an important influence of the underlying Paleozoic sediments in the composition of waters from Guarani aquifer. The available data allowed estimate the groundwater residence time by two U-isotopes disequilibrium methods. Values of 45-61 ka were initially calculated, depending on the adopted porosity (15-20%), but a longer residence time (- 640 ka) was also estimated, which is more compatible with the hydraulic conductivity data in Guarani aquifer and groundwater flow velocity occurring at Milk River aquifer, Alberta, Canada. Such time range agrees with previously reported (14)C ages exceeding 30 ka BP at the more central parts of the Parana sedimentary basin. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Groundwater samples were analysed for Rn-222, Ra-226, and Ra-228 in Guarani aquifer spreading around I million kin 2 within four countries in South America, and it was found that their activity concentrations are lognormally distributed. Population-weighted average activity concentration for these radionuclides allowed to estimate a value: either slightly higher (0.13 mSv/year) than 0.1 mSv for the total effective dose or two times higher (0.21 mSv/year) than this limit, depending on the choice of the dose conversion factor. Such calculation adds useful information for the appropriate management of this transboundary aquifer that is socially and economically very important to about 15 million inhabitants living in Brazil, Argentina, Uruguay and Paraguay. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
This investigation was carried out within the Parana sedimentary basin, Brazil, involved the sampling of groundwater and air, and was realized with the purpose of evaluating the radioactivity, due to radon gas, in a thermal spa utilizing the waters from Guarani (Botucatu-Piramboia) aquifer. The results reported here provide additional information relative to that of previous studies focusing on the presence of radionuclides in the aquifer, which have mainly characterized those belonging to uranium and thorium series decay, such as the uranium isotopes (U-238 and U-234), radium isotopes (Ra-226 and Ra-228), radon daughters (Bi-214 and Pb-214) and radon (Rn-222) itself the results obtained were compared with the maximum permissible concentration limits in air and drinking water defined by international standards, such as the guidelines for drinking water quality established by the World Health Organization. The possible processes responsible for the presence of radon in the aquifer were also considered in order to evaluate the data obtained.