31 resultados para pyramidal nerve cell

em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Studies have demonstrated that nutrient deficiency during pregnancy or in early postnatal life results in structural abnormalities in the offspring hippocampus and in cognitive impairment. In an attempt to analyze whether gestational protein restriction might induce learning and memory impairments associated with structural changes in the hippocampus, we carried out a detailed morphometric analysis of the hippocampus of male adult rats together with the behavioral characterization of these animals in the Morris water maze (MWM). Our results demonstrate that gestational protein restriction leads to a decrease in total basal dendritic length and in the number of intersections of CA3 pyramidal neurons whereas the cytoarchitecture of CA1 and dentate gyrus remained unchanged. Despite presenting significant structural rearrangements, we did not observe impairments in the MWM test. Considering the clear dissociation between the behavioral profile and the hippocampus neuronal changes, the functional significance of dendritic remodeling in fetal processing remains undisclosed. © 2012 ISDN.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We examined the effects of beta-pompilidotoxin (beta-PMTX), a neurotoxin derived from wasp venom. on synaptic transmission in the mammalian central nervous system (CNS). Using hippocampal slice preparations of rodents, we made both extracellular and intracellular recordings from the CA1 pyramidal neurons in response to stimulation of the Schaffer collateral/commissural fibers. Application of 5-10 muM beta-PMTX enhanced excitatory postsynaptic potentials (EPSPs) but suppressed the fast component of the inhibitory postsynaptic potentials (IPSPs). In the presence of 10 muM bicuculline, beta-PMTX potentiated EPSPs that were composed of both non-NMDA and NMDA receptor-mediated potentials. Potentiation of EPSPs was originated by repetitive firings of the prosynaptic axons, causing Summation of EPSPs. In the presence of 10 muM CNQX and 50 muM APV, beta-PMTX suppressed GABA(A) receptor-mediated fast IPSPs but retained GABA(B) receptor-mediated slow IPSPs. Our results suggest that beta-PMTX facilitates excitatory synaptic transmission by a presynaptic mechanism and that it causes overexcitation followed by block of the activity of some population of interneurons which regulate the activity of GABA(A) receptors. (C) 2001 Published by Elsevier B.V. Ireland Ltd and the Japan Neuroscience Society.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Research on Blindsight, Neglect/Extinction and Phantom limb syndromes, as well as electrical measurements of mammalian brain activity, have suggested the dependence of vivid perception on both incoming sensory information at primary sensory cortex and reentrant information from associative cortex. Coherence between incoming and reentrant signals seems to be a necessary condition for (conscious) perception. General reticular activating system and local electrical synchronization are some of the tools used by the brain to establish coarse coherence at the sensory cortex, upon which biochemical processes are coordinated. Besides electrical synchrony and chemical modulation at the synapse, a central mechanism supporting such a coherence is the N-methyl-D-aspartate channel, working as a 'coincidence detector' for an incoming signal causing the depolarization necessary to remove Mg 2+, and reentrant information releasing the glutamate that finally prompts Ca 2+ entry. We propose that a signal transduction pathway activated by Ca 2+ entry into cortical neurons is in charge of triggering a quantum computational process that accelerates inter-neuronal communication, thus solving systemic conflict and supporting the unity of consciousness. © 2001 Elsevier Science Ltd.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Understanding the biological activity profile of the snake venom components is fundamental for improving the treatment of snakebite envenomings and may also contribute for the development of new potential therapeutic agents. In this work, we tested the effects of BthTX-I, a Lys49 PLA2 homologue from the Bothrops jararacussu snake venom. While this toxin induces conspicuous myonecrosis by a catalytically independent mechanism, a series of in vitro studies support the hypothesis that BthTX-I might also exert a neuromuscular blocking activity due to its ability to alter the integrity of muscle cell membranes. To gain insight into the mechanisms of this inhibitory neuromuscular effect, for the first time, the influence of BthTX-I on nerve-evoked ACh release was directly quantified by radiochemical and real-time video-microscopy methods. Our results show that the neuromuscular blockade produced by in vitro exposure to BthTX-I (1 μM) results from the summation of both pre- and postsynaptic effects. Modifications affecting the presynaptic apparatus were revealed by the significant reduction of nerve-evoked [3H]-ACh release; real-time measurements of transmitter exocytosis using the FM4-64 fluorescent dye fully supported radiochemical data. The postsynaptic effect of BthTX-I was characterized by typical histological alterations in the architecture of skeletal muscle fibers, increase in the outflow of the intracellular lactate dehydrogenase enzyme and progressive depolarization of the muscle resting membrane potential. In conclusion, these findings suggest that the neuromuscular blockade produced by BthTX-I results from transient depolarization of skeletal muscle fibers, consequent to its general membrane-destabilizing effect, and subsequent decrease of evoked ACh release from motor nerve terminals. © 2012 Elsevier Ltd.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Objetive: To provide information for pediatricians and neonatologists to create realistic outcome expectations and thus help plan their actions. Sources of data: Searches were made of the Cochrane Library, MEDLINE, and Lilacs databases. Summary of the findings: The assessment of growth and development over the first 2-3 years must adjust chronological age with respect of the degree of prematurity. There is special concern regarding the prognoses of small for gestational age preterm infants, and for those with bronchopulmonary dysplasia. Attention must be directed towards improving the nutrition of extremely low birth weight infants during their first years of life; these infants have high prevalence levels of failure to catch-up on growth, diseases and rehospitalizations during their first 2 years. They are frequently underweight and shorter than expected during early childhood, but delayed catch-up growth may occur between 8 and 14 years. Extremely low birth weight infants are at increased risk of neurological abnormalities and developmental delays during their first years of life. Educational, psychological, and behavioral problems are frequent during school years. Teenage and adult outcomes show that although some performance differences persist, social integration is not impaired. Conclusions: The growth and neurodevelopment of all ELBW infants must be carefully monitored after discharge, to ensure that children and their families receive adequate support and intervention to optimize prognoses. Copyright © 2005 by Sociedade Brasileira de Pediatria.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this study we investigated the effect of the acetyl-L-carnitine (ALC) supplementation on the myenteric neurons of the jejunum of rats made diabetic at the age of 105 days by streptozotocin (35 mg/kg body weight). Four groups were used: non-diabetic (C), non-diabetic supplemented with ALC (CC), diabetic (D), diabetic supplemented with ALC (DC). After 15 weeks of diabetes induction the blood was collected by cardiac puncture to evaluate glycaemia and glycated haemoglobin. Next the animals were killed and the jejunum was collected and subjected to whole-mount preparation to evidence the myenteric neurons through the histochemical technique of the NADH-diaphorase. The neuronal counts were made in 80 microscopic fields, in tissue samples of five animals of each group. The profiles of the cell bodies of 1000 neurons per group were analysed. Diabetes induced a significant increase in the area of the cell body and decrease in the number of NADH-diaphorase positive myoenteric neurons. ALC suplementation to the diabetic group promoted smaller hypertrophic effects and less neuronal loss than in the myoenteric neurons of the diabetic rats, and in addition diminished the body weight decrease and reduced the fasting glycaemia. © 2005 Blackwell Verlag.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The neuromodulatory effect of nitric oxide (NO) on glutamatergic transmission within the NTS related to cardiovascular regulation has been widely investigated. Activation of glutamatergic receptors in the NTS stimulates the production and release of NO and other nitrosyl substances with neurotransmitter/neuromodulator properties. The presence of NOS, including the protein nNOS and its mRNA in vagal afferent terminals in the NTS and nodose ganglion cells suggest that NO can act on glutamatergic transmission. We previously reported that iontophoresis of L-NAME on NTS neurons receiving vagal afferent inputs significantly decreased the number of action potentials evoked by iontophoretic application of AMPA. In addition, iontophoresis of the NO donor papaNONOate enhanced spontaneous discharge and the number of action potentials elicited by AMPA, suggesting that NO could be facilitating AMPA-mediated neuronal transmission within the NTS. Furthermore, the changes in renal sympathetic discharge during activation of baroreceptors and cardiopulmonary receptors involve activation of AMPA and NMDA receptors in the NTS and these responses are attenuated by microinjection of L-NAME in the NTS of conscious and anesthetized rats. Cardiovascular responses elicited by application of NO in the NTS are closely similar to those obtained after activation of vagal afferent inputs, and L-glutamate is the main neurotransmitter of vagal afferent fibers. In this review we discuss the possible neuromodulatory mechanisms of central produced/released NO on glutamatergic transmission within the NTS.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The median preoptic nucleus (MnPO) is one of most important site of the lamina terminalis implicated in the regulation of hydro electrolytic and cardiovascular balance. The purpose of this study was to determine the effect of L-Type calcium channel antagonist, nifedipine, on the increase of median arterial blood pressure (MAP) induce by angiotensin II (ANG II) injected into the MnPO. The influence of nitric oxide (NO) on nifedipine antipressor action has also been studied by utilizing N W-nitro-L-arginine methyl ester (L-NAME) (40 μg 0.2 μL -1) a NO synthase inhibitor (NOSI), 7-nitroindazole (7-NIT) (40 μg 0.2 μL -1), a specific neuronal NO synthase inhibitor (nNOSI) and sodium nitroprusside (SNP) (20 μg 0.2 μL -1) a NO donor agent. We have also investigated the central role of losartan and PD123349 (20 nmol 0.2 μL -1), AT 1 and AT 2, respectively (selective non peptide ANG II receptor antagonists), in the pressor effect of ANG II (25 pmol 0.2 μL -1) injected into the MnPO. Male Wistar rats weighting 200-250 g, with cannulae implanted into the MnPO were utilized. Losartan injected into the MnPO, prior to ANG II, blocked the pressor effect of ANGII. PD 123319 only decreased the pressor effect of ANG II. Rats pre-treated with either 50 μg 0.2 μL -1 or 100 μg 0.2 μL -1 of nifedipine, followed by 25 pmol 0.2 μL -1 of ANG II, decreased ANG II-pressor effect. L-NAME potentiated the pressor effect of ANG II. 7-NIT injected prior to ANG II into the MnPO also potentiated the pressor effect of ANGII but with less intensity than that of L-NAME. SNP injected prior to ANG II blocked the pressor effect of ANG II. The potentiation action of L-NAME and 7-NIT on ANG II-pressor effect was blocked by prior injection of nifedipine. The results described in this study provide evidence that calcium channels play important roles in central ANG II-induced pressor effect. The structures containing NO in the brain, such as MnPO, include both endothelial and neuronal cells, which might be responsible for the influence of nifedipine on the pressor effect of ANG II. These data have shown the functional relationship between L-Type calcium channel and a free radical gas NO in the MnPO, on the control of ANG II-induced pressor effect acting in AT 1 and AT 2 receptors.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The suprachiasmatic nucleus, an essential diencephalic component of the circadian timing system, plays a role in the generation and modulation of behavioral and neuroendocrine rhythms in mammals. Its cytoarchitecture, neurochemical and hodological characteristics have been investigated in various mammalian species, particularly in rodents. In most species, two subdivisions, based on these aspects and considered to reflect functional specialization within the nucleus, can be recognized. Many studies reveal a typical dense innervation by serotonergic fibers in this nucleus, mainly in the ventromedial area, overlapping the retinal afferents. However, a different pattern occurs in certain animals, which lead us to investigate the distribution of serotonergic afferents in the suprachiasmatic nucleus of the Capuchin monkey, Cebus apella, compared to the marmoset, Callithrix jacchus, and two Rattus norvegicus lines (Long Evans and Wistar), and to reported findings for other mammalian species. Our morphometric data show the volume and length of the suprachiasmatic nucleus along the rostrocaudal axis to be greatest in C. apella > C. jacchus > Long Evans ≥ Wistar rats, in agreement with their body sizes. In C. apella, however, the serotonergic terminals occupy only some 10% of the nucleus' area, less than the 25% seen in the marmoset and rats. The distribution of the serotonergic fibers in C. apella does not follow the characteristic ventral organization pattern seen in the rodents. These findings raise questions concerning the intrinsic organization of the nucleus, as well as regarding the functional relationship between serotonergic input and retinal afferents in this diurnal species. © 2007 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Myosin-Va is a Ca 2+/calmodulin-regulated unconventional myosin involved in the transport of vesicles, membranous organelles, and macromolecular complexes composed of proteins and mRNA. The cellular localization of myosin-Va has been described in great detail in several vertebrate cell types, including neurons, melanocytes, lymphocytes, auditory tissues, and a number of cultured cells. Here, we provide an immunohistochemical view of the tissue distribution of myosin-Va in the major endocrine organs. Myosin-Va is highly expressed in the pineal and pituitary glands and in specific cell populations of other endocrine glands, especially the parafollicular cells of the thyroid, the principal cells of the parathyroid, the islets of Langerhans of the pancreas, the chromaffin cells of the adrenal medulla, and a subpopulation of interstitial testicular cells. Weak to moderate staining has been detected in steroidogenic cells of the adrenal cortex, ovary, and Leydig cells. Myosin-Va has also been localized to non-endocrine cells, such as the germ cells of the seminiferous epithelium and maturing oocytes and in the intercalated ducts of the exocrine pancreas. These data provide the first systematic description of myosin-Va localization in the major endocrine organs of rat. © 2008 Springer-Verlag.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Objective: To review scientific literature in order to check how infant development surveillance is being carried out in Brazil. Data sources: Search on databases (PubMed, Medline, SciELO and CAPES Database Thesis) for studies on medical practices related to surveillance and monitoring of child development in Brazil from 2000 to 2011. The terms used for research were: child development surveillance, early intervention, developmental screening, and developmental screening tests. There were ten texts on the subject under study. Original articles, reviews, and thesis were analyzed, as well as the reference lists of publications on the topic. Data synthesis: Studies on monitoring of child development in Brazil showed major failures from pediatrician formation to clinical practice. Conclusions: It is urgent to offer continued medical education to pediatricians in order to update their knowledge about child development monitoring, especially due to the increasing numbers of preterm infants.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Aims The macrophage migration inhibitory factor (MIF) is an intracellular inhibitor of the central nervous system actions of angiotensin II on blood pressure. Considering that angiotensin II actions at the nucleus of the solitary tract are important for the maintenance of hypertension in spontaneously hypertensive rats (SHRs), we tested if increased MIF expression in the nucleus of the solitary tract of SHR alters the baseline high blood pressure in these rats.Methods and resultsEight-week-old SHRs or normotensive rats were microinjected with the vector AAV2-CBA-MIF into the nucleus of the solitary tract, resulting in MIF expression predominantly in neurons. Rats also underwent recordings of the mean arterial blood pressure (MAP) and heart rate (via telemetry devices implanted in the abdominal aorta), cardiac- and baroreflex function. Injections of AAV2-CBA-MIF into the nucleus of the solitary tract of SHRs produced significant decreases in the MAP, ranging from 10 to 20 mmHg, compared with age-matched SHRs that had received identical microinjections of the control vector AAV2-CBA-eGFP. This lowered MAP in SHRs was maintained through the end of the experiment at 31 days, and was associated with an improvement in baroreflex function to values observed in normotensive rats. In contrast to SHRs, similar increased MIF expression in the nucleus of the solitary tract of normotensive rats produced no changes in baseline MAP and baroreflex function.ConclusionThese results indicate that an increased expression of MIF within the nucleus of the solitary tract neurons of SHRs lowers blood pressure and restores baroreflex function. © 2012 Published on behalf of the European Society of Cardiology. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

New Findings: • What is the central question of this study? The main purpose of the present manuscript was to investigate the cardiorespiratory responses to hypoxia or hypercapnia in conscious rats submitted to neuronal blockade of the parafacial region. We clearly showed that the integrity of parafacial region is important for the respiratory responses elicited by peripheral and central chemoreflex activation in freely behavior rats. • What is the main finding and its importance? Since the parafacial region is part of the respiratory rhythm generator, they are essential for postnatal survival, which is probably due to their contribution to chemoreception in conscious rats. The retrotrapezoid nucleus (RTN), located in the parafacial region, contains glutamatergic neurons that express the transcriptor factor Phox2b and that are suggested to be central respiratory chemoreceptors. Studies in anaesthetized animals or in vitro have suggested that RTN neurons are important in the control of breathing by influencing respiratory rate, inspiratory amplitude and active expiration. However, the contribution of these neurons to cardiorespiratory control in conscious rats is not clear. Male Holtzman rats (280-300 g, n= 6-8) with bilateral stainless-steel cannulae implanted into the RTN were used. In conscious rats, the microinjection of the ionotropic glutamatergic agonist NMDA (5 pmol in 50 nl) into the RTN increased respiratory frequency (by 42%), tidal volume (by 21%), ventilation (by 68%), peak expiratory flow (by 24%) and mean arterial pressure (MAP, increased by 16 ± 4, versus saline, 3 ± 2 mmHg). Bilateral inhibition of the RTN neurons with the GABAA agonist muscimol (100 pmol in 50 nl) reduced resting ventilation (52 ± 34, versus saline, 250 ± 56 ml min-1 kg-1 with absolute values) and attenuated the respiratory response to hypercapnia and hypoxia. Muscimol injected into the RTN slightly reduced resting MAP (decreased by 13 ± 7, versus saline, increased by 3 ± 2 mmHg), without changing the effects of hypercapnia or hypoxia on MAP and heart rate. The results suggest that RTN neurons activate facilitatory mechanisms important to the control of ventilation in resting, hypoxic or hypercapnic conditions in conscious rats. © 2012 The Authors. Experimental Physiology © 2012 The Physiological Society.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fipronil is a neurotoxic insecticide that inhibits the gamma-aminobutyric acid receptor and can affect gustative perception, olfactory learning, and motor activity of the honeybee Apis mellifera. This study determined the lethal dose (LD50) and the lethal concentration (LC50) for Africanized honeybee and evaluated the toxicity of a sublethal dose of fipronil on neuron metabolic activity by way of histochemical analysis using cytochrome oxidase detection in brains from worker bees of different ages. In addition, the present study investigated the recovery mechanism by discontinuing the oral exposure to fipronil. The results showed that mushroom bodies of aged Africanized honeybees are affected by fipronil, which causes changes in metabolism by increasing the respiratory activity of mitochondria. In antennal lobes, the sublethal dose of fipronil did not cause an increase in metabolic activity. The recovery experiments showed that discontinued exposure to a diet contaminated with fipronil did not lead to recovery of neural activity. Our results show that even at very low concentrations, fipronil is harmful to honeybees and can induce several types of injuries to honeybee physiology. © 2012 Springer Science+Business Media New York.