12 resultados para protein delivery
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Biocompatible inorganic nano- and microcarriers can be suitable candidates for protein delivery. This study demonstrates facile methods of functionalization by using nanoscale linker molecules to change the protein adsorption capacity of hydroxyapatite (HA) powder. The adsorption capacity of bovine serum albumin as a model protein has been studied with respect to the surface modifications. The selected linker molecules (lysine, arginine, and phosphoserine) can influence the adsorption capacity by changing the electrostatic nature of the HA surface. Qualitative and quantitative analyses of linker-molecule interactions with the HA surface have been performed by using NMR spectroscopy, zeta-potential measurements, X-ray photoelectron spectroscopy, and thermogravimetric analyses. Additionally, correlations to theoretical isotherm models have been calculated with respect to Langmuir and Freundlich isotherms. Lysine and arginine increased the protein adsorption, whereas phosphoserine reduced the protein adsorption. The results show that the adsorption capacity can be controlled with different functionalization, depending on the protein-carrier selections under consideration. The scientific knowledge acquired from this study can be applied in various biotechnological applications that involve biomolecule-inorganic material interfaces.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Platelet-derived growth factor-BB (PDGF-BB) stimulates repair of healing-impaired chronic wounds such as diabetic ulcers and periodontal lesions. However, limitations in predictability of tissue regeneration occur due, in part, to transient growth factor bioavailability in vivo. Here, we report that gene delivery of PDGF-B stimulates repair of oral implant extraction socket defects. Alveolar ridge defects were created in rats and were treated at the time of titanium implant installation with a collagen matrix containing an adenoviral (Ad) vector encoding PDGF-B (5.5 x 10(8) or 5.5 x 10(9) pfu ml (1)), Ad encoding luciferase (Ad-Luc; 5.5 x 10(9) pfu ml (1); control) or recombinant human PDGF-BB protein (rhPDGF-BB, 0.3 mg ml (1)). Bone repair and osseointegration were measured through backscattered scanning electron microscopy, histomorphometry, microcomputed tomography and biomechanical assessments. Furthermore, a panel of local and systemic safety assessments was performed. Results indicated that bone repair was accelerated by Ad-PDGF-B and rhPDGF-BB delivery compared with Ad-Luc, with the high dose of Ad-PDGF-B more effective than the low dose. No significant dissemination of the vector construct or alteration of systemic parameters was noted. In summary, gene delivery of Ad-PDGF-B shows regenerative and safety capabilities for bone tissue engineering and osseointegration in alveolar bone defects comparable with rhPDGF-BB protein delivery in vivo. Gene Therapy (2010) 17, 95-104; doi: 10.1038/gt.2009.117; published online 10 September 2009
Resumo:
Natural rubber latex from Hevea brasiliensis has interesting characteristics related to this work such as: it is easy to manipulate, low cost, can stimulate the natural angiogenesis, is a biocompatible material and presents high mechanical resistance. The aim of this study was to develop a novel sustained delivery system for Stryphnodendron sp. based on Natural Rubber Latex (NRL) membranes and to study the Stryphnodendron sp. delivery system behavior. Stryphnodendron sp., commonly known as barbatimao is extensively used in folk medicine for the treatment of diarrhoea, gynaecological problems and for healing wounds. The stem bark of this species is mentioned in the Brazilian Pharmacopeia with a content of at least 20% of tannins. Previous studies showed significant cicatrizant properties, anti-inflammatory activity and gastric anti-ulcerogenic effects for the stem bark crude extract. One possible way to accelerate the tissue repair process, it was incorporated the Stryphnodendron sp. extract in NRL membranes. Stryphnodendron sp extract was incorporated into the NRL, by mixing it in solution for in vitro protein delivery experiments. Results show that the NRL membrane can release Stryphnodendron sp. for up to 49.89% of its Stryphnodendron sp. content for up 400 h. The kinetics of the extract release could be fitted with double exponential function, with two characteristic times of 0.78 and 133.22 h. In this study, we demonstrated that the induced angiogenesis provided by NRL membranes combined with a controlled release of extract is relevant for biomedical applications.
Consuming viscous prey: a novel protein-secreting delivery system in neotropical snail-eating snakes
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
In order to assess a new strategy of DNA vaccine for a more complete understanding of its action in immune response, it is important to determine the in vivo biodistribution fate and antigen expression. In previous studies, our group focused on the prophylactic and therapeutic use of a plasmid DNA encoding the Mycobacterium leprae 65-kDa heat shock protein (Hsp65) and achieved an efficient immune response induction as well as protection against virulent M. tuberculosis challenge. In the present study, we examined in vivo tissue distribution of naked DNA-Hsp65 vaccine, the Hsp65 message, genome integration and methylation status of plasmid DNA. The DNA-Hsp65 was detectable in several tissue types, indicating that DNA-Hsp65 disseminates widely throughout the body. The biodistribution was dose-dependent. In contrast, RT-PCR detected the Hsp65 message for at least 15 days in muscle or liver tissue from immunized mice. We also analyzed the methylation status and integration of the injected plasmid DNA into the host cellular genome. The bacterial methylation pattern persisted for at least 6 months, indicating that the plasmid DNA-Hsp65 does not replicate in mammalian tissue, and Southern blot analysis showed that plasmid DNA was not integrated. These results have important implications for the use of DNA-Hsp65 vaccine in a clinical setting and open new perspectives for DNA vaccines and new considerations about the inoculation site and delivery system. © 2006 Coelho-Castelo et al; licensee BioMed Central Ltd.
Resumo:
Aims Maternal malnutrition by low protein diet is associated with an increased incidence of metabolic disorders and decreased male fertility in adult life. This study aimed to assess the impact of maternal protein malnutrition (MPM) on prostate growth, tissue organization and lesion incidence with aging. Main methods Wistar rat dams were distributed into two groups, which were control (NP; fed a normal diet containing 17% protein) or a restricted protein diet (RP, fed a diet containing 6% protein) during gestation. After delivery all mothers and offspring received a normal diet. Biometrical parameters, hormonal levels and prostates were harvested at post-natal days (PND) 30, 120 and 360. Key findings MPM promoted low birth weight, decreased ano-genital distance (AGD) and reduced androgen plasma levels of male pups. Prostatic lobes from RP groups presented reduced glandular weight, epithelial cell height and alveolar diameter. The epithelial cell proliferation and collagen deposition were increased in RP group. Incidences of epithelial dysplasia and prostatitis were higher in the RP offspring than in the NP offspring at PND360. Significance Our findings show that MPM delays prostate development, growth and maturation until adulthood, probably as a result of low testosterone stimuli. The higher incidence of cellular dysplasia and prostatitis suggests that MPM increases prostate susceptibility to diseases with aging. © 2013 Elsevier Inc.
Resumo:
The yolk protein precursor, vitellogenin (Vg), in bees is synthesized in the fat body trophocytes, delivered to the hemolymph and ultimately absorbed from there during the vitellogenic phase of oocytes in the active ovary. The routes tracing the material exchange that occurs between the trophocytes and the hemolymph, in addition to the transportation from the hemolymph to the ovarian follicles, were marked by alkaline phosphatase and lanthanum nitrate (LN). Active ovaries from nurse workers and physogastric queens, as well as inactive ovaries of virgin queens, were examined by transmission electron microscopy. The LN permitted better visualization of the routes of exchanges between the organs and the hemolymph. Both methods demonstrate the apparent differences between the phases of the ovary and the bee caste. In inactive ovaries of the virgin queens, the routes from the follicular epithelium to the oocyte remain closed; conversely, they are open in active ovaries of the nurse workers and physogastric queens. The differences between the methods and classes of bees are discussed. © The Author 2013. Published by Oxford University Press [on behalf of The Japanese Society of Microscopy]. All rights reserved.
Resumo:
Objectives: To determine whether histologic chorioamnionitis is associated with changes in gene expression of TLR-1, -2, -4 and -6, and to describe the localization of these receptors in fetal membranes. Study design: A total of 135 amniochorion membranes with or without histologic chorioamnionitis from preterm or term deliveries were included. Fragments of membranes were submitted to total RNA extraction. RNA was reverse transcribed and the quantification of TLRs expression measured by real time PCR. Results: All amniochorion membranes expressed TLR-1 and TLR-4, whereas 99.1% of membranes expressed TLR-2 and 77.4% expressed TLR-6. TLR-1 and TLR-2 expressions were significantly higher in membranes with histologic chorioamnionitis as compared to membranes without chorioamnionitis in preterm pregnancies (p = 0.003 and p < 0.001, respectively). Among the membranes of term pregnancies there were no differences in the expressions of such receptors regardless of inflammatory status. Regarding TLR-4 and TLR-6 expression, there was no difference among membranes with or without histologic chorioamnionitis, regardless gestational age at delivery. TLR-1, TLR-2, TLR-4 and TLR-6 expressions were observed in amniotic epithelial, chorionic and decidual cells. Conclusion: Amniochorion membranes express TLR-1, TLR-2, TLR-4 and TLR-6 and increased expression of TLR-1 and TLR-2 is related to the presence of histologic chorioamnionitis in preterm pregnancies. This study provides further evidence that amniochorion membranes act as a mechanical barrier to microorganisms and as components of the innate immune system. © 2013 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Silencing mitogen-activated protein kinase-activated protein kinase-2 arrests inflammatory bone loss
Resumo:
p38 mitogen-activated protein kinases (MAPKs) are critical for innate immune signaling and subsequent cytokine expression in periodontal inflammation and bone destruction. In fact, previous studies show that systemic p38 MAPK inhibitors block periodontal disease progression. However, development of p38 MAPK inhibitors with favorable toxicological profiles is difficult. Here, we report our findings regarding the contribution of the downstream p38 MAPK substrate, mitogen-activated protein kinase-activated protein kinase 2 (MK2 or MAPKAPK-2), in immune response modulation in an experimental model of pathogen-derived lipopolysaccharide (LPS)-induced periodontal bone loss. To determine whether small interfering RNA (siRNA) technology has intraoral applications, we initially validated MK2 siRNA specificity. Then, gingival tissue surrounding maxillary molars of rats was injected with MK2 siRNA or scrambled siRNA at the palatal regions of bone loss. Intraoral tissues treated with MK2 siRNA had significantly less MK2 mRNA expression compared with scrambled siRNA-treated tissues. MK2 siRNA delivery arrested LPS-induced inflammatory bone loss, decreased inflammatory infiltrate, and decreased osteoclastogenesis. This proof-of-concept study suggests a novel target using an intraoral RNA interference strategy to control periodontal inflammation.