53 resultados para polymer optical fiber sensor
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
In this work we proposed a relative humidity (RH) sensor based on a Bragg grating written in an optical fiber, associated with a coating of organo-silica hybrid material prepared by the sol-gel method. The organo-silica-based coating has a strong adhesion to the optical fiber and its expansion is reversibly affected by the change in the RH values (15.0-95.0%) of the surrounding environment, allowing an increased sensitivity (22.2 pm/%RH) and durability due to the presence of a siliceous-based inorganic component. The developed sensor was tested in a real structure health monitoring essay, in which the RH inside two concrete blocks with different porosity values was measured over 1 year. The results demonstrated the potential of the proposed optical sensor in the monitoring of civil engineering structures.
Resumo:
The J(1)...J(3) is a recent optical method for linear readout of dynamic phase modulation index in homodyne interferometers. In this work, the J(1)... J(3) method is applied to measure voltage in an optical voltage sensor. Based on the classical J(1)...J(4) method, the J(1)... J(3) technique shows to be more stable to phase drift and simpler for implementation than the original one. The sensor dynamic range is enhanced. The agreement between theoretical and experimental results, based on 1/f noise, is demonstrated.
Resumo:
In this paper a modified chalcogenide glass was studied by X-ray powder diffraction, differential thermal analysis, infrared and Raman scattering spectroscopies. The study of this new matrix opens new perspectives to fabricate Pr3+-doped fibers to operate as an optical amplifier in the 1.3 mum telecommunications window. The Pr3+-doped 70Ga(2)S(3)-30La(2)S(3) glass was modified through the substitution of La2S3 by La2O3, which improves the thermal stability of these glasses without any modification of phonon energy. The possibility to pull a fiber from this glass system without any devitrification is easily achieved.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
We demonstrate the supercontinuum (SC) generation in a suspended-core As2S3 chalcogenide microstructured optical fiber (MOF). The variation of SC is investigated by changing the fiber length, pump peak power and pump wavelength. In the case of long fibers (20 and 40 cm), the SC ranges are discontinuous and stop at the wavelengths shorter than 3500 nm, due to the absorption of fiber. In the case of short fibers (1.3 and 2.4 cm), the SC ranges are continuous and can extend to the wavelengths longer than 4 μm. The SC broadening is observed when the pump peak power increases from 0.24 to 1.32 kW at 2500 nm. The SC range increases with the pump wavelength changing from 2200 to 2600 nm, corresponding to the dispersion of As2S3 MOF from the normal to anomalous region. The SC generation is simulated by the generalized nonlinear Schrödinger equation. The simulation includes the SC difference between 1.3 and 2.4 cm long fiber by 2500 nm pumping, the variation of SC with pump peak power in 2.4 cm long fiber, and the variation of SC with pump wavelength in 1.3 cm long fiber. The simulation agrees well with the experiment.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
A fluorometric technique based on a liquid drop excited from its interior by an optical fiber is described for the measurement of low concentrations of atmospheric hydrogen sulfide (H2S). A drop of alkaline fluorescein mercuric acetate (FMA) solution is suspended in a flowing air sample stream and serves as a renewable sensor. An optical fiber contained within the conduit that forms the drop, brings in the excitation beam; the fluorescence emission is measured by an inexpensive photodiode positioned close to the drop. As H2S in the sample is collected by the alkaline drop, it reacts rapidly with FMA resulting in a significant decrease in fluorescence intensity, proportional to the concentration of H2S sampled. The chemistry of this uniquely selective reaction has been well established for many years, the present technique permits a simple fast inexpensive near real-time measurement with very little reagent consumption. Even without prolonged sampling/preconcentration steps, limits of detection (LODs) in the double digit ppbv range is readily attainable. (C) 1997 Elsevier B.V. B.V.
Resumo:
An amperometric oxygen sensor based on a polymeric nickel-salen (salen = N,N '-ethylenebis(salicydeneiminato)) film coated platinum electrode was developed. The sensor was constructed by electropolymerization of nickel-salen complex at a platinum electrode in acetonitrile/tetrabuthylamonium perchlorate by cyclic voltammetry. The voltammetric behavior of the modified electrode was investigated in 0.5 mol L-1 KCl solution in the absence and presende of molecular oxygen. A significant increased of cathodic peak current (at -0.20 vs. SCE) of the modified electrode with addition of oxygen to the solution was observed. This result shows that the nickel-salen film on the surface of the electrode promotes the reduction of oxygen. The reaction can be brought about electrochemically where in the nickel(II) complex is first reduced to a nickel(I) complex at the electrode surface. The nickel(I) complex then undergoes a catalytic oxidation by the oxygen molecular in solution back to the nickel(II) complex, which can then be electrochemically re-reduced to produce an enhancement of the cathodic current. The plot of the cathodic current versus the dissolved oxygen concentration for chronoamperometry (potential fixed = -0.20 V) at the sensor was linear in the concentration range of 3.95 to 9.20 mg L-1 with concentration limit of 0.17 mg L-1 O-2. The modified electrode proposed is useful for the quality control and routine analysis of dissolved oxygen in commercial water and environmental water samples. The results obtained for the levels of dissolved oxygen are in agreement with the results obtained with an O-2 commercial sensor. (C) 2011 Published by Elsevier Ltd.
Resumo:
Pós-graduação em Engenharia Elétrica - FEIS
Resumo:
We did a numerical investigation of the propagation of short light pulses in the region of 1.55 mu m and the conversion efficiency (CE) for the four wave mixing generation (FWM) of ordinary and dispersion decreasing fibers for use in wavelength division multiplexing (WDM) systems, Our simulations studies three different profiles, linear, hyperbolic. and constant, One conclude that for all the profiles there is decrease of the conversion efficiency with the increase in the channel separation. The hyperbolic profile present a higher efficiency of around 1000 above in magnitude compared with the others profiles at 0.2 nm of channel separation. We calculate the conversion efficiency versus the fiber length for the three profiles. The conversion efficiency for the hyperbolic profile is higher when compared to the constant and linear profiles. The other interesting point of the hyperbolic profile is that the increase of the CE in the beginning of the fiber does not show my oscillation in the CE value (log eta), which was observed for the constant and linear profiles. For all the profiles there is an increase of the conversion efficiency with the increase of the pump power. The compression factor C-i for the generated FWM signal at omega(3) was measured along the DDF's and the constant profile fibers. One can conclude that with the use of decreasing dispersion profile (DDF) fibers one can have a control of the (CE) conversion efficiency and the compression factor of the four wave mixing (FWM) generation in WDM systems. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
A performance comparison between a recently proposed novel technique known as fast orthogonal frequency-division multiplexing (FOFDM) and conventional orthogonal frequency-division multiplexing (OFDM) is undertaken over unamplified, intensity-modulated, and direct-detected directly modulated laser-based optical signals. Key transceiver parameters, such as the maximum achievable transmission capacity and the digital-to-analog/analog-to-digital converter (DAC/ADC) effects are explored thoroughly. It is shown that, similarly to conventional OFDM, the least complex and bandwidth efficient FOFDM can support up to similar to 20 Gb/s over 500 m worst-case multimode fiber (MMF) links having 3 dB effective bandwidths of similar to 200 MHz X km. For compensation of the DAC/ADC roll-off, a power-loading (PL) algorithm is adopted, leading to an FOFDM system improvement of similar to 4 dB. FOFDM and conventional OFDM give similar optimum DAC/ADC parameters over 500 m worst-case MMF, while over 50 km single-mode fiber a maximum deviation of only similar to 1 dB in clipping ratio is observed due to the imperfect chromatic dispersion compensation caused by one-tap equalizers.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
A nephelometric technique based on a liquid drop is described for the measurement of atmospheric sulfur dioxide. A 40-mul drop of barium chloride and hydrogen peroxide solution is suspended in a flowing-air sampling stream. The sulfur (IV) collected is oxidized to sulfur (VI) and finally precipitated as barium sulfate. Nephelometric detection of drop is achieved by an appropriate arrangement consisting of an optical fiber contacting the drop and a photodiode placed at 90degrees relative to the fiber. The design and characteristics of this drop-based gas sensor system are described. The analytical response, as photocurrent, is proportional to the product of the sampling period and the sulfur dioxide concentration. The detection limit is ca. 1.1 mg m(-3) for a 10-min sampling time. The present technique is fairly rapid and simple, uses a small amount of reagent and is set up with low-cost equipment, making this system economically viable. (C) 2002 Elsevier B.V. B.V. All rights reserved.
Resumo:
Values of glass transition temperature (Tg) and of linear expansion coefficient (α) for Asx S100-x glasses were measured in the range of concentrations 35 × 42. Because of the importance of the glass formation region 35 × 42 for the optical fibers elaboration, special attention was made on high-pure Asx S100-x glasses. For the glass in the range of 35 × 38, we measure Tg with the interval of x equal to 1 at.% of arsenic. We also measured the Tg values with the interval of x equal to 0.5 at.% of As. We obtained nonlinear behavior of Tg, reflecting the change in molecular composition of As-S glass in the glass composition range studied. The control of such parameters is important to produce optical fibers with specific numerical aperture. © 2013 The American Ceramic Society and Wiley Periodicals, Inc.
Resumo:
We report on the fabrication of novel lead-germanate glasses and fibers. We have characterized these glasses in terms of their thermal properties, Raman spectra and refractive indices (both linear and nonlinear) and present them as viable alternatives to tellurite glasses for applications requiring highly nonlinear optical fibers. © 2013 Optical Society of America.