114 resultados para plate boundary
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
The aim of this work is to present a formulation of the boundary element method to analyse elastic and isotropic plates with curved boundaries. In this study the plate boundary is approximated, along each element, by a second degree polynomial relation or by a circular arch, in order to better represent the real boundary. The numerical integration is performed by the self-adaptive coordinate transformation proposed by Telles. The effective shear forces are approximated by concentrated reactions applied at the boundary element nodes, according to the alternative formulation introduced by Paiva. Some examples are presented to demonstrate the better accuracy obtained with the proposed elements.
Resumo:
A multiyear solution of the SIRGAS-CON network was used to estimate the strain rates of the earth surface from the changing directions of the velocity vectors of 140 geodetic points located in the South American plate. The strain rate was determined by the finite element method using Delaunay triangulation points that formed sub-networks; each sub-network was considered a solid and homogeneous body. The results showed that strain rates vary along the South American plate and are more significant on the western portion of the plate, as expected, since this region is close to the subduction zone of the Nazca plate beneath the South American plate. After using Euler vectors to infer Nazca plate movement and to orient the velocity vectors of the South American plate, it was possible to estimate the convergence and accommodation rates of the Nazca and South American plates, respectively. Strain rate estimates permitted determination of predominant contraction and/or extension regions and to establish that contraction regions coincide with locations with most of the high magnitude seismic events. Some areas with extension and contraction strains were found to the east within the stable South American plate, which may result from different stresses associated with different geological characteristics. These results suggest that major movements detected on the surface near the Nazca plate occur in regions with more heterogeneous geological structures and multiple rupture events. Most seismic events in the South American plate are concentrated in areas with predominant contraction strain rates oriented northeast-southwest; significant amounts of elastic strain can be accumulated on geological structures away from the plate boundary faults; and, behavior of contractions and extensions is similar to what has been found in seismological studies. © 2013 Elsevier Ltd.
Resumo:
This paper is part of the special publication Continental transpressional and transtensional tectonics (eds R.E. Holdsworth, R.A. Strachan and J.F. Dewey). Two orogenic belts have been recognized in south- east Brazil, which are interpreted to have been formed as a product of diachronous collisions between three continental plates. Wide crustal-scale shear belts have developed both between and inboard of the collided and amalgamated plate borders. These shear belts record frontal, oblique or lateral displacements during oblique plate convergence and A-type subduction. The overall structural style of each belt depends on the angle subtended between the plate boundary and the convergence vector. The E-W branch between the Sao Paulo and Brasilia plates the Campo do Meio strike-slip shear belt, has undergone dominantly sinistral wrench dominated transpression along a set of folds and shear zones dipping southwards. The NE-SW branch between the Sao Paulo and Vitoria plates, the Paraiba do Sul strike-slip shear belt, has undergone a partitioned dextral transpression, whereas the north-south branch between the Brasilia and Vitoria plates is essentially a frontal thrust system with only a weak component of dextral strike-slip. These complex structural patterns, formed at deep to mid-crustal levels, reflect temporal and spatial partitioning at all scales between flattening and non- coaxial deformation, and down-dip and strike-slip shearing, in tangential as well as in transcurrent structural domains. Additionally, this area demonstrates that regional flower structures, lateral extrusion and other secondary deformations across the yz sections of transpressional belts are important in accommodating shortening in obliquely convergent orogens.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
This paper presents an experimental technique for structural health monitoring (SHM) based on Lamb waves approach in an aluminum plate using piezoelectric material as actuators and sensors. Lamb waves are a form of elastic perturbation that remains guided between two parallel free surfaces, such as the upper and lower surfaces of a plate, beam or shelf. Lamb waves are formed when the actuator excites the surface of the structure with a pulse after receiving a signal. Two PZTs were placed in the plate surface and one of them was used to send a predefined wave through the structure. Thus, the other PZT (adjacent) becomes the sensor. Using this methodology, this paper presents one case of damage detection considering the aluminum plate in the free-free-free-free boundary condition. The damage was simulated by adding additional mass on the plate. It is proposed two damage detection indexes obtained from the experimental signal, involving the Fast Fourier Transform (FFT) and the power spectral density (PSD) that were computed using the output signal. The results show the viability of the presented methodology to damage detection in smart structures
Resumo:
A direct version of the boundary element method (BEM) is developed to model the stationary dynamic response of reinforced plate structures, such as reinforced panels in buildings, automobiles, and airplanes. The dynamic stationary fundamental solutions of thin plates and plane stress state are used to transform the governing partial differential equations into boundary integral equations (BIEs). Two sets of uncoupled BIEs are formulated, respectively, for the in-plane state ( membrane) and for the out-of-plane state ( bending). These uncoupled systems are joined to formamacro-element, in which membrane and bending effects are present. The association of these macro-elements is able to simulate thin-walled structures, including reinforced plate structures. In the present formulation, the BIE is discretized by continuous and/or discontinuous linear elements. Four displacement integral equations are written for every boundary node. Modal data, that is, natural frequencies and the corresponding mode shapes of reinforced plates, are obtained from information contained in the frequency response functions (FRFs). A specific example is presented to illustrate the versatility of the proposed methodology. Different configurations of the reinforcements are used to simulate simply supported and clamped boundary conditions for the plate structures. The procedure is validated by comparison with results determined by the finite element method (FEM).
Resumo:
We consider the family of singularly nonautonomous plate equation with structural dampingu(tt) + a(t, x)u(t) - Delta u(t) + (-Delta)(2)(u) + lambda u = f(u),in a bounded domain Omega subset of R(n), with Navier boundary conditions. When the nonlinearity f is dissipative we show that this problem is globally well posed in H(0)(2)(Omega) x L(2)(Omega) and has a family of pullback attractors which is upper-semicontinuous under small perturbations of the damping a.
Resumo:
In this work we show how to define the action of a scalar field such that the Robin boundary condition is implemented dynamically, i.e. as a consequence of the stationary action principle. We discuss the quantization of that system via functional integration. Using this formalism, we derive an expression for the Casimir energy of a massless scalar field under Robin boundary conditions on a pair of parallel plates, characterized by constants c(1) and c(2). Some special cases are discussed; in particular, we show that for some values of cl and c(2) the Casimir energy as a function of the distance between the plates presents a minimum. We also discuss the renormalization at one-loop order of the two-point Green function in the philambda(4) theory subject to the Robin boundary condition on a plate.
Resumo:
In this work, a numerical model to perform non-linear analysis of building floor structures is proposed. The presented model is derived from the Kirchhoff-s plate bending formulation of the boundary element method (BENI) for zoned domains, in which the plate stiffness is modified by the presence of membrane effects. In this model, no approximation of the generalized forces along the interface is required and the compatibility and equilibrium conditions along interfaces are imposed at the integral equation level. In order to reduce the number of degrees of freedom, the Navier Bernoulli hypothesis is assumed to simplify the strain field for the thin sub-regions (rectangular beams). The non-linear formulation is obtained from the linear formulation by incorporating initial internal force fields, which are approximated by using the well-known cell sub-division. Then, the non-linear solution of algebraic equations is obtained by using the concept of the consistent tangent operator. The Von Mises criterion is adopted to govern the elasto-plastic material behaviour checked at points along the plate thickness and along the rectangular beam element axes. The numerical representations are accurately obtained by either computing analytically the element integrals or performing the numerical integration accurately using an appropriate sub-elementation scheme. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Transient non-Darcy forced convection on a flat plate embedded in a porous medium is investigated using the Forchheimer-extended Darcy law. A sudden uniform pressure gradient is applied along the flat plate, and at the same time, its wall temperature is suddenly raised to a high temperature. Both the momentum and energy equations are solved by retaining the unsteady terms. An exact velocity solution is obtained and substituted into the energy equation, which then is solved by means of a quasi-similarity transformation. The temperature field can be divided into the one-dimensional transient (downstream) region and the quasi-steady-state (upstream) region. Thus the transient local heat transfer coefficient can be described by connecting the quasi-steady-state solution and the one-dimensional transient solution. The non-Darcy porous inertia works to decrease the velocity level and the time required for reaching the steady-state velocity level. The porous-medium inertia delays covering of the plate by the steady-state thermal boundary layer. © 1990.
Resumo:
Pyrophosphatase activity of rat osseous plate alkaline phosphatase was studied at different concentrations of calcium and magnesium ions. with the aim of characterizing the modulation of enzyme activity by these metals. In the absence of metal ions, the enzyme hydrolysed pyrophosphate following Michaelian kinetics with a specific activity of 36.7 U/mg and K-0.5 = 88 mu M. In the presence of low concentrations (0.1 mM) of magnesium (or calcium) ions, the enzyme also exhibited Michaclian kinetics for the hydrolysis of pyrophosphate, but a significant increase in specific activity (123 U/mg) was observed. K-m values remained almost unchanged. Quite different behavior occurred in the presence of 2 mM magnesium (or calcium) ions. In addition to low-affinity sites (K-0.5 = 40 and 90 mu M, for magnesium and calcium, respectively), high-affinity sites were also observed with K-0.5 values 100-fold lower. The high-affinity sites observed in the presence of calcium ions represented about 10% of those observed for magnesium ions. This was correlated with the fact that only magnesium ions triggered conformational changes yielding a fully active enzyme. These results suggested that the enzyme could hydrolyse pyrophosphate, even at physiological concentrations (4 mu M), since magnesium concentrations are high enough to trigger conformational changes increasing the enzyme activity. A model, suggesting the involvement of magnesium ions in the hydrolysis of pyrophosphate by rat osseous plate alkaline phosphatase is proposed. (C) 1998 Published by Elsevier B.V. Ltd. All rights reserved.
Resumo:
Purified membrane-bound alkaline phosphatase from rat osseous plate hydrolyzed pyrophosphate in the presence of magnesium ions, with a specific activity of 92.7 U/mg. Optimal apparent pH for pyrophosphatase activity was 8.0 and it remained unchanged on increasing the pyrophosphate concentration. In the absence of magnesium ions the enzyme had a K-m = 88 mu M and V = 36.7 U/mg for pyrophosphate and no inhibition by excess substrate was observed. Pyrophosphatase activity was rapidly destroyed at temperatures above 40 degrees C, but magnesium ions apparently protected the enzyme against danaturation. Sodium metavanadate (Ki = 1.0 mM) was a competitive inhibitor of pyrophosphatase activity, while levamisole (Ki = 8.2 mM) and theophylline (Ki = 7.4 mM) were uncompetitive inhibitors. Magnesium ions (K-0.5 = 1.7 mu M) stimulated pyrophosphatase activity, while cobalt (Ki = 48.5 mu M) and zinc (Ki = 22.0 mu M) ions were non-competitive inhibitors. Manganese and calcium ions had no effect on pyrophosphatase activity. The M-w of the pyrophosphatase: protein was 130 kDa by gel filtration, but a value of 65 kDa was obtained by dissociative gel electrophoresis, suggesting that it was a dimer of apparently identical subunits. These results suggested that pyrophosphatase activity stems from the membrane-bound osseous plate alkaline phosphatase and not from a different protein.
Resumo:
Treatment with phosphatidylinositol-specific phospholipase C of rat osseous plate membranes released up to 90-95% of alkaline phosphatase, but a specific ATPase activity (optimum pH = 7.5) remained bound to the membrane. The hydrolysis of ATP by this ATPase was negligible in the absence of magnesium or calcium ions. However, at millimolar concentrations of magnesium and calcium ions, the membrane-specific ATPase activity increased to about 560-600 U/mg, exhibiting two classes of ATP-hydrolysing sites, and site-site interactions. GTP, UTP, ITP, and CTP were also hydrolyzed by the membrane-specific ATPase. Oligomycin, ouabain, bafilomycin A(1), thapsigargin, omeprazole, ethacrynic acid and EDTA slightly affected membrane-specific ATPase activity while vanadate produced a 18% inhibition. The membrane-specific ATPase activity was insensitive to theophylline, but was inhibited 40% by levamisole. These data suggested that the membrane-specific ATPase activity present in osseous plate membranes, and alkaline phosphatase, were different proteins. (C) 1998 Elsevier B.V. B.V.
Resumo:
In this work, we describe an experimental setup in which an electric current is used to determine the angular velocity attained by a plate rotating around a shaft in response to a torque applied for a given period. Based on this information, we show how the moment of inertia of a plate can be determined using a procedure that differs considerably from the ones most commonly used, which generally involve time measurements. Some experimental results are also presented which allow one to determine parameters such as the exponents and constant of the conventional equation of a plate's moment of inertia.