130 resultados para planning (artificial intelligence)

em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Petroleum well drilling monitoring has become an important tool for detecting and preventing problems during the well drilling process. In this paper, we propose to assist the drilling process by analyzing the cutting images at the vibrating shake shaker, in which different concentrations of cuttings can indicate possible problems, such as the collapse of the well borehole walls. In such a way, we present here an innovative computer vision system composed by a real time cutting volume estimator addressed by support vector regression. As far we know, we are the first to propose the petroleum well drilling monitoring by cutting image analysis. We also applied a collection of supervised classifiers for cutting volume classification. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work describes the new improvements of the SISTEMAT project, one system for structural elucidation mainly in the field of Natural Products Chemistry. Some examples of the resolution of problems using C-13 Nuclear Magnetic Resonance and Mass Spectroscopy are given. Programs to discover new heuristic rules for structure generation are discussed. The data base contains about 10000 C-13 NMR spectra.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper shows a comparative study between the Artificial Intelligence Problem Solving and the Human Problem Solving. The study is based on the solution by many ways of problems proposed via multiple-choice questions. General techniques used by humans to solve this kind of problems are grouped in blocks and each block is divided in steps. A new architecture for ITS - Intelligent Tutoring System is proposed to support experts' knowledge representation and novices' activities. Problems are represented by a text and feasible answers with particular meaning and form, to be rigorously analyzed by the solver to find the right one. Paths through a conceptual space of states represent each right solution.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we introduce a DAI approach called hereinafter Fuzzy Distributed Artificial Intelligence (FDAI). Through the use of fuzzy logic, we have been able to develop mechanisms that we feel may effectively improve current DAI systems, giving much more flexibility and providing the subsidies which a formal theory can bring. The appropriateness of the FDAI approach is explored in an important application, a fuzzy distributed traffic-light control system, where we have been able to aggregate and study several issues concerned with fuzzy and distributed artificial intelligence. We also present a number of current research directions necessary to develop the FDAI approach more fully.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper introduces a method for the supervision and control of devices in electric substations using fuzzy logic and artificial neural networks. An automatic knowledge acquisition process is included which allows the on-line processing of operator actions and the extraction of control rules to replace gradually the human operator. Some experimental results obtained by the application of the implemented software in a simulated environment with random signal generators are presented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Secondary phases such as Laves and carbides are formed during the final solidification stages of nickel based superalloy coatings deposited during the gas tungsten arc welding cold wire process. However, when aged at high temperatures, other phases can precipitate in the microstructure, like the γⳠand δ phases. This work presents a new application and evaluation of artificial intelligent techniques to classify (the background echo and backscattered) ultrasound signals in order to characterize the microstructure of a Ni-based alloy thermally aged at 650 and 950 °C for 10, 100 and 200 h. The background echo and backscattered ultrasound signals were acquired using transducers with frequencies of 4 and 5 MHz. Thus with the use of features extraction techniques, i.e.; detrended fluctuation analysis and the Hurst method, the accuracy and speed in the classification of the secondary phases from ultrasound signals could be studied. The classifiers under study were the recent optimum-path forest (OPF) and the more traditional support vector machines and Bayesian. The experimental results revealed that the OPF classifier was the fastest and most reliable. In addition, the OPF classifier revealed to be a valid and adequate tool for microstructure characterization through ultrasound signals classification due to its speed, sensitivity, accuracy and reliability. © 2013 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We consider the management branch model where the random resources of the subsystem are given by the exponential distributions. The determinate equivalent is a block structure problem of quadratic programming. It is solved effectively by means of the decomposition method, which is based on iterative aggregation. The aggregation problem of the upper level is resolved analytically. This overcomes all difficulties concerning the large dimension of the main problem.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper proposes a new strategy to reduce the combinatorial search space of a mixed integer linear programming (MILP) problem. The construction phase of greedy randomized adaptive search procedure (GRASP-CP) is employed to reduce the domain of the integer variables of the transportation model of the transmission expansion planning (TM-TEP) problem. This problem is a MILP and very difficult to solve specially for large scale systems. The branch and bound (BB) algorithm is used to solve the problem in both full and the reduced search space. The proposed method might be useful to reduce the search space of those kinds of MILP problems that a fast heuristic algorithm is available for finding local optimal solutions. The obtained results using some real test systems show the efficiency of the proposed method. © 2012 Springer-Verlag.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This article describes the use of Artificial Intelligence (IA) techniques applied in cells of a manufacturing system. Machine Vision was used to identify pieces and their positions of two different products to be assembled in the same productive line. This information is given as input for an IA planner embedded in the manufacturing system. Therefore, initial and final states are sent automatically to the planner capable to generate assembly plans for a robotic cell, in real time.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Artificial neural networks are dynamic systems consisting of highly interconnected and parallel nonlinear processing elements. Systems based on artificial neural networks have high computational rates due to the use of a massive number of these computational elements. Neural networks with feedback connections provide a computing model capable of solving a rich class of optimization problems. In this paper, a modified Hopfield network is developed for solving problems related to operations research. The internal parameters of the network are obtained using the valid-subspace technique. Simulated examples are presented as an illustration of the proposed approach. Copyright (C) 2000 IFAC.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Este artigo é uma tentativa de delinear as principais características da pesquisa numa nova área de estudos a chamada Inteligência Artificial (AI). Os itens 1 e 2 constituem um rápido histórico da AI e seus pressupostos básicos. O item 3 trata da teoria de resolução de problemas, desenvolvida por A. Newell e H. Simon. O item 4 procura mostrar a relevância da AI para a Filosofia, em especial para a filosofia da Mente e para a Teoria do Conhecimento.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

O artigo aborda problemas filosóficos relativos à natureza da intencionalidade e da representação mental. A primeira parte apresenta um breve histórico dos problemas, percorrendo rapidamente alguns episódios da filosofia clássica e da filosofia contemporânea. A segunda parte examina o Chinese Room Argument (Argumento do Quarto do Chinês) formulado por J. Searle. A terceira parte desenvolve alguns argumentos visando mostrar a inadequação do modelo funcionalista de mente na construção de robots. A conclusão (quarta parte) aponta algumas alternativas ao modelo funcionalista tradicional, como, por exemplo, o conexionismo.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Domains where knowledge representation is too complex to be described analytically and in a deterministic way is very common in the petroleum industry, particularly in the field of exploration and production. In these domains, applications of artificial intelligence techniques are very suitable, especially in cases where the preservation of corporate and technical knowledge is important. The Laboratory for Research on Artificial Intelligence Applied to Petroleum Engineering (LIAP) at Unicamp, has, during the last 10 years, dedicated research efforts to build intelligent systems in well drilling and petroleum production fields. In the following sections, recent advances in intelligent systems, under development in the research laboratory, are described. (C) 2001 Published by Elsevier B.V. B.V.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The capacitor placement problem for radial distribution networks aims to determine capacitor types, sizes, locations and control scheme. This is a combinatorial problem that can be formulated as a mixed integer nonlinear program. The paper presents an algorithm inspired in artificial immune systems and developed for this specific problem. A good performance was obtained through experimental tests applied to known systems. © 2006 IEEE.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Bit performance prediction has been a challenging problem for the petroleum industry. It is essential in cost reduction associated with well planning and drilling performance prediction, especially when rigs leasing rates tend to follow the projects-demand and barrel-price rises. A methodology to model and predict one of the drilling bit performance evaluator, the Rate of Penetration (ROP), is presented herein. As the parameters affecting the ROP are complex and their relationship not easily modeled, the application of a Neural Network is suggested. In the present work, a dynamic neural network, based on the Auto-Regressive with Extra Input Signals model, or ARX model, is used to approach the ROP modeling problem. The network was applied to a real oil offshore field data set, consisted of information from seven wells drilled with an equal-diameter bit.