49 resultados para phenylpropanoid glycoside
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
The first isocoumarin isolated from the methylene chloride extract of Paepalanthus bromelioides, named paepalantine (isocoumarin 1), was found to have antimicrobial activity; but, it is mutagenic clastogenic and cytotoxic. Two other isocoumarins, paepalantine-9-O-beta-D-glucopyranoside (isocoumarin 2) and paepalantine-9-O-beta-D-allopyranosyl(1-->6) glucopyranoside (isocoumarin 3) were isolated from the ethanolic extract. A fourth new isocoumarin, also isolated from the methylene chloride extract of the capitula of P. bromelioides, was characterized as an 8-8' dimer of paepalantine and denominated isocoumarin 4. The abilities of isocoumarins 2, 3 and 4 to induce mutations in Salmonella typhimurium strains TA97a, TA98, TA100 and TA102 were investigated. Mutagenic activity was observed in strain TA97a treated with isocoumarin 2 in the presence of S9 mixture. The substitution of H at position 9 by glucose or glucose-allose caused reductions in the mutagenic activities of paepalantine, indicating this to be an important site for these properties. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Phenylpropanoid glycosides, 1 '-O-benzyl-alpha-(L)-rhamnopyranosyl-(1 ''-> 6 ')-beta-(D)-glucopyranoside (1) and alpha-(L)-Xylopyranosyl(4 '', 2 ')-(3-O-beta-(D)-glucopyranosyl)-1 '-O-E-caffeoyl-beta-(D)-glucopyranoside (2), together with the known derivatives, 1,6-di-O-caffeoyl- beta-(D)-glucopyrano side (3), 1-O-(E)-caffeoyl-beta-(D)-glucopyranoside (4) and 1-O-(E)-feruloyl-beta-(D)-glucopyranoside (5), were isolated from leaves of Coussarea hydrangeifolia. Their structures were determined by IR, HRESIMS, and I D and 2D NMR experiments, and their antioxidant activities, evaluated by assaying the free radical scavenging capacity using the DPPH (1,1-diphenyl-2-picrylhydrazyl) radical as substrate. The antioxidant activities of 3 and 4 (IC50 values of 15.0 and 19.2 mu M, respectively) were comparable to that of the standard positive control caffeic acid, whilst 2 and 5 were only weakly active and 1 was inactive. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
A new antifungal phenolic glycoside, 3,4,5-trimethoxyphenyl-1-O-β-D- (5-O-syringoyl)-apiofuranosyl-(1→6)-β-D-glucopyranoside (1), together with four known iridoids, geniposidic acid (2), geniposide (3), 6α-hydroxygeniposide (4) and 6β-hydroxygeniposide (5); two lignans, (+)-lyoniresinol-3α-O-β-D-glucopyranoside (6), (-)-lyoniresinol- 3α-O-β-D-glucopyranoside (7); and two phenolic acids, chlorogenic (8) and salicylic acids (9) and D-manitol (10), were isolated from the ethanolic extract of the stems of Alibertia sessilis. Structures of 1 and of the known compounds were determined by spectroscopic analysis. All compounds isolated were evaluated for their antifungal activities against two phytopathogenic fungi strains Cladosporium cladosporioides and C. sphaerospermum by direct bioautography. ©2007 Sociedade Brasileira de Química.
Resumo:
Many Chrysobalanaceae species, in special Licania and Parinari, are widely used in folk medicine to treat several diseases. This review describes some aspects of their ethnopharmacology potential, biological activities and the secondary metabolites reported so far for Chrysobalanaceae. The chemical constituents of this family include triterpenoids, diterpenoids, steroids and phenylpropanoids like flavonoids as well as chromones derivatives. © 2012 Springer Science+Business Media Dordrecht.
Resumo:
Termites can degrade up to 90% of the lignocellulose they ingest using a repertoire of endogenous and symbiotic degrading enzymes. Termites have been shown to secrete two main glycoside hydrolases, which are GH1 (EC 3.2.1.21) and GH9 (EC 3.2.1.4) members. However, the molecular mechanism for lignocellulose degradation by these enzymes remains poorly understood. The present study was conducted to understand the synergistic relationship between GH9 (CgEG1) and GH1 (CgBG1) from Coptotermes gestroi, which is considered the major urban pest of São Paulo State in Brazil. The goal of this work was to decipher the mode of operation of CgEG1 and CgBG1 through a comprehensive biochemical analysis and molecular docking studies. There was outstanding degree of synergy in degrading glucose polymers for the production of glucose as a result of the endo-β-1,4-glucosidase and exo-β-1,4-glucosidase degradation capability of CgEG1 in concert with the high catalytic performance of CgBG1, which rapidly converts the oligomers into glucose. Our data not only provide an increased comprehension regarding the synergistic mechanism of these two enzymes for cellulose saccharification but also give insight about the role of these two enzymes in termite biology, which can provide the foundation for the development of a number of important applied research topics, such as the control of termites as pests as well as the development of technologies for lignocellulose-to-bioproduct applications. © 2013 Elsevier Ltd.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Two C,O-diglycosylated compounds, the anthrone picramnioside F, and the oxanthrone mayoside C, were isolated from the stem bark of Picramnia teapensis, along with the previously reported anthraquinones, 1-O-beta -D- and 8-O-beta -D-glucopyranosyl emodin. The compounds were separated by recycling-HPLC, and their structures were determined on the basis of spectroscopic analysis. CD measurements were used to establish the absolute configuration of the anthrone and oxanthrone. The antifungal activity of 1-O-beta -D- and 8-O--D-glucopyranosyl emodin against Leucoagaricus gongilophorus was shown to be similar to that of the lignan sesamin. (C) 2000 Elsevier B.V. Ltd. All rights reserved.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)