93 resultados para peroxide hydrogen
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
Background. Tooth bleaching has been widely studied, mainly due to the possible undesirable effects that can be caused by this esthetic procedure. The cytotoxicity of the bleaching agents and its components to pulp cells has been demonstrated in several researches. The aim of this study was to evaluate the toxic effects of successive applications of 10% carbamide peroxide (CP) gel on odontoblast-like cells. Materials and methods. Enamel-dentin discs obtained from bovine incisors were adapted to artificial pulp chambers (APCs). The groups were formed as follows: G1: Without treatment (control group); G2: 10% carbamide peroxide, CP (five applications/one per day); G3: 10% CP (one unique application); and G4: 35% hydrogen peroxide, HP (three applications of 15 min each). After treatment, cell metabolism (MTT), alkaline phosphatase (ALP) activity and plasma membrane damage (flow cytometry) were analyzed. Results. Reductions in cell metabolism and alkaline phosphatase activity along with severe damage of the cytoplasmic membrane were noted in G2. In G3, no damage was observed, compared to the control group. Intermediary values of toxicity were obtained after 35% HP application. Conclusion. It can be concluded that one application of 10% CP did not cause toxic effects in odontoblast-like cells, but the successive application of this product promoted severe cytotoxic effects. The daily application of the bleaching agents, such as used in the at-home bleaching technique, can increase the damages caused by this treatment to the dental pulp cells. © 2013 Informa Healthcare.
Resumo:
The activity of ten compounds isolated from Brazilian lichen over the release of hydrogen peroxide and nitric oxide was evaluated in the culture of peritoneal macrophage cells from mice. Salazinic, secalonic A and fumarprotocetraric acids were the compounds that induced the greatest release of H2O2, whereas 12R-usnic and diffractaic acids induced the release of NO. These results indicate that lichen products have potential immunological modulating activities. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
The aim of this study was to evaluate by micro-shear bond strength test, the bond strength of composite resin restoration to enamel submitted to whitening dentifrices. Forty bovine teeth were embedded in polystyrene resin and polished. The specimens were randomly divided into eight groups (n=5), according to the dentifrice (carbamide peroxide, hydrogen peroxide and conventional dentifrice) and the adhesive system (Prime & Bond 2.1 and Adper Single Bond 2). Dentifrice was applied for 15 minutes a day, for 21 days. Thirty minutes after the last exposure to dentifrice, the samples were submitted to a bonding procedure with the respective adhesive system. After that, four buttons of resin were bonded in each sample using transparent cylindrical molds. After 24 hours, the teeth were submitted to the micro-shear bond strength test and subsequent analysis of the fracture mode. Data were submitted to analysis of variance and Fisher's PLSD test (alpha = 0.05). The micro-shear bond strength showed no difference between adhesives systems but a significant reduction was found between the control and carbamide groups (p = 0.0145) and the control and hydrogen groups (p = 0.0370). The evaluation of the failures modes showed that adhesive failures were predominant. Cohesive failures were predominant in group IV The use of dentifrice with peroxides can decrease bonding strength in enamel.
Resumo:
Objectives: This study aimed to measure pH changes during 14 days intracoronal bleaching with hydrogen peroxide/sodium perborate and carbamide peroxide/sodium perborate. Materials and methods: Twenty patients presenting endodontically treated central maxillary incisors with color alterations were divided in two groups (n = 10): Group CP + SP: 37% carbamide peroxide + sodium perborate paste; Group HP + SP: 30% hydrogen peroxide + sodium perborate paste. The pH values were measured using a digital microprocessor at different times: Baseline, 2, 7 and 14 days. Data were analyzed with two-way ANOVA followed by Tukey's test (α = 0.05). Results: ANOVA showed p < 0.00 which indicated significant difference between the groups. The mean values (± sd) and the results of the Tukey's test were: HP + SP/14 days-7.98 (±0.58)a; HP + SP/7 days-8.59 (±0.18)b; HP + SP/2 days-8.83 (±0.32)bc; HP + SP/Baseline-8.83 (±0.01)bc; CP + SP/Baseline-8.89 (±0.01)bc; CP + SP/14 days-9.11 (±0.58)cd; CP + SP/7 days-9.54 (±0.16)de; CP + SP/2 days-9.66 (±0.08) de. The group HP + SP resulted in significantly lower pH values compared with group CP + SP. Conclusion: It can be concluded that both associations showed alkaline pH values; however, there was significant reduction in the pH values of the 30% hydrogen peroxide associated with sodium perborate after 14 days. Clinical Significance: The association of hydrogen peroxide and carbamide peroxide with sodium perborate paste presented alkaline characteristics during the 14-day evaluated period. Thus, regarding pH changes, both associations can be considered safe as intracoronal bleaching agents.
Resumo:
Aim: To evaluate the effectiveness of ultrasonic activation of bleaching agents during ex vivo internal bleaching. Methodology: Fifty canine human teeth were artificially stained, root filled and divided into five groups (n = 10) that received SP - sodium perborate plus deionized water (control group), CP - 37% carbamide peroxide gel, CPUS - 37% carbamide peroxide gel plus ultrasonic application, HP - 35% hydrogen peroxide gel or HPUS - 35% hydrogen peroxide gel plus ultrasonic application. In groups CP and HP, the bleaching agent was left inside the pulp chamber for three applications of 10 min. In groups CPUS and HPUS, the same process was performed, but ultrasonic vibration was applied to the bleaching agent by an alloy tip for 30 s, with 30 s intervals. Two sessions were performed. The colour was measured initially and after each session by an intraoral dental spectrophotometer. The variation (Δ) of the colour parameters based on the CIELab system L*, a* and b*, and the colour alteration ΔE* were calculated after first and second section. Data were analysed by one-way anova and Tukey's test. Results: There was no significant difference amongst groups for ΔL*, Δa* and ΔE*, but there was a significant difference for Δb* in the first and second sessions (P = 0.0006 and 0.0016, respectively). After the first session, Δb* was significantly greater for groups HP and HPUS, without a significant difference between them. For the second session, group HPUS had the greatest Δb* values, but they were similar to groups HP and SP; group CP had the lowest values, which were similar to groups CPUS and SP. Conclusion: Ultrasonic activation of bleaching agents during ex vivo internal bleaching was no more effective than conventional internal bleaching procedures, without activation. © 2012 International Endodontic Journal.
Resumo:
Apocynin is the most employed inhibitor of NADPH oxidase (NOX), a multienzymatic complex capable of catalyzing the one-electron reduction of molecular oxygen to the superoxide anion. Despite controversies about its selectivity, apocynin has been used as one of the most promising drugs in experimental models of inflammatory and neurodegenerative diseases. Here, we aimed to study the chemical and biophysical properties of apocynin. The oxidation potential was determined by cyclic voltammetry (Epa = 0.76V), the hydrophobicity index was calculated (logP = 0.83) and the molar absorption coefficient was determined (ε275nm = 1.1 × 104 M-1 cm-1). Apocynin was a weak free radical scavenger (as measured using the DPPH, peroxyl radical and nitric oxide assays) when compared to protocatechuic acid, used here as a reference antioxidant. On the other hand, apocynin was more effective than protocatechuic acid as scavenger of the non-radical species hypochlorous acid. Apocynin reacted promptly with the non-radical reactive species H2O2 only in the presence of peroxidase. This finding is relevant, since it represents a new pathway for depleting H2O2 in cellular experimental models, besides the direct inhibition of NADPH oxidase. This could be relevant for its application as an inhibitor of NOX4, since this isoform produces H 2O2 and not superoxide anion. The binding parameters calculated by fluorescence quenching showed that apocynin binds to human serum albumin (HSA) with a binding affinity of 2.19 × 104 M -1. The association did not alter the secondary and tertiary structure of HSA, as verified by synchronous fluorescence and circular dichroism. The displacement of fluorescent probes suggested that apocynin binds to site I and site II of HSA. Considering the current biomedical applications of this phytochemical, the dissemination of these chemical and biophysical properties can be very helpful for scientists and physicians interested in the use of apocynin.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundacao de Amparo a Pesquisa do Estado de sao Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The [(Mn4O5)-O-IV(terpy)(4)(H2O)(2)](6+) complex, show great potential for electrode modification by electropolymerization using cyclic voltammetry. The voltammetric behavior both in and after electropolymerization process were also discussed, where the best condition of electropolymerization was observed for low scan rate and 50 potential cycles. A study in glass electrode for better characterization of polymer was also performed. Electrocatalytic process by metal centers of the conducting polymer in H2O2 presence with an increase of anodic current at 0.85 V vs. SCE can be observed. The sensor showed great response from 9.9 x 10(-5) to 6.4 x 10(-4) mol L-1 concentration range with a detection limit of 8.8 x 10(-5) mol L-1, where the electrocatalytic mechanism was based on oxidation of H2O2 to H2O with consequently reduction of Mn-IV to Mn-III. After, the Mn-III ions are oxidized electrochemically to Mn-IV ions. (C) 2012 Elsevier Ltd .... Selection and/or peer-review under responsibility of the Symposium Cracoviense Sp. z.o.o.
Resumo:
Horseradish peroxidase (HRP) is a plant enzyme widely used in biotechnology, including antibody-directed enzyme prodrug therapy (ADEPT). Here, we showed that HRP is able to catalyze the autoxidation of acetylacetone in the absence of hydrogen peroxide. This autoxidation led to generation of methylglyoxal and reactive oxygen species. The production of superoxide anion was evidenced by the effect of superoxide dismutase and by the generation of oxyperoxidase during the enzyme turnover. The HRP has a high specificity for acetylacetone, since the similar beta-dicarbonyls dimedon and acetoacetate were not oxidized. As this enzyme prodrug combination was highly cytotoxic for neutrophils and only requires the presence of a non-human peroxidase and acetylacetone, it might immediately be applied to research on the ADEPT techniques. The acetylacetone could be a starting point for the design of new drugs applied in HRP-related ADEPT techniques. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Chlorhexidine, even at low concentrations, is toxic for a variety of eukaryotic cells; however, its effects on host immune cells are not well known. We evaluated in vitro chlorhexidine-induced cytotoxicity and its effects on reactive oxygen/nitrogen intermediate induction by murine peritoneal macrophages. Thioglycollate-induced cells were obtained from Swiss mice by peritoneal lavage with 5 ml of 10 mM phosphate-buffered saline, washed twice and resuspended (10(6) cells/ml) in appropriate medium for each test. Cell preparations contained more than 95% macrophages. The cytotoxicity was determined by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide assay and the presence of hydrogen peroxide (H2O2) and nitric oxide (NO) by the horseradish peroxidase-dependent oxidation of phenol red and Griess reaction, respectively. The midpoint cytotoxicity values for 1- and 24-h exposures were 61.12 ± 2.46 and 21.22 ± 2.44 µg/ml, respectively. Chlorhexidine did not induce synthesis or liberation of reactive oxygen/nitrogen intermediates. When macrophages were treated with various sub-toxic doses for 1 h (1, 5, 10, and 20 µg/ml) and 24 h (0.5, 1, and 5 µg/ml) and stimulated with 200 nM phorbol myristate acetate (PMA) solution, the H2O2 production was not altered; however, the NO production induced by 10 µg/ml lipopolysaccharide (LPS) solution varied from 14.47 ± 1.46 to 22.35 ± 1.94 µmol/l and 13.50 ± 1.42 to 20.44 ± 1.40 µmol/l (N = 5). The results showed that chlorhexidine has no immunostimulating activity and sub-toxic concentrations did not affect the response of macrophages to the soluble stimulus PMA but can interfere with the receptor-dependent stimulus LPS.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)