61 resultados para passive stiffness
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
The problem of shock generated vibration is very common in practice and difficult to isolate due to the high levels of excitation involved and its transient nature. If not properly isolated it could lead to large transmitted forces and displacements. Typically, classical shock isolation relies on the use of passive stiffness elements to absorb energy by deformation and some damping mechanism to dissipate residual vibration. The approach of using nonlinear stiffness elements is explored in this paper, focusing in providing an isolation system with low dynamic stiffness. The possibilities of using such a configuration for a shock mount are studied experimentally following previous theoretical models. The model studied considers electromagnets and permanent magnets in order to obtain nonlinear stiffness forces using different voltage configurations. It is found that the stiffness nonlinearities could be advantageous in improving shock isolation in terms of absolute displacement and acceleration response when compared with linear elastic elements. Copyright (C) 2015 Elsevier Ltd. All rights reserved
Resumo:
The aim this study was to evaluate systolic and diastolic function in volume overload induced myocardial hypertrophy in rats.Volume overload myocardial hypertrophy was induced in thirteen male Wistar rats by creating infrarenal arteriovenous fistula (AVF). The results were compared with a SHAM operated group (n = 11). Eight weeks after surgery, tail-cuff blood pressure was recorded, then rats were sacrificed for isolated heart studies using Langendorffs preparation.AVF rats presented increased left and right ventricular weights, compared to controls. The increased normalized ventricular volume (V0/LVW, 0.141 +/- 0.035 mL/g vs. 0.267 +/- 0.071 mL/g, P < 0.001) in the AVF group indicated chamber dilation. Myocardial hydroxyproline concentration remained unchanged. There was a significant decrease in +dP/dt (3318 +/- 352 mm Hg s(-1) vs. 2769 +/- 399 mm Hg s(-1); P=0,002), end-systolic pressure-volume relation (246 +/- 56 mm Hg mL(-1) vs. 114 +/- 63 mm Hg mL(-1);, P < 0,001), and -dP/dt (1746 +/- 240 min Hg s(-1) vs. 1361 +/- 217 mm Hg s(-1), P < 0.001) in the AVF group, which presented increased ventricular compliance (Delta V-25: SHAM=0.172 +/- 0.05 mL vs. AVF=0.321 +/- 0.072 mL, P < 0.001) with preserved myocardial passive stiffness (Strain(25): SHAM=13.5 +/- 3.0% vs. AVF=12.3 +/- 1.9%, P > 0.05).We conclude that volume-overload induced hypertrophy causes myocardial systolic and diastolic dysfunction with increased ventricular compliance. These haemodynamic features help to explain the long-term compensatory phase of chronic volume overload before transition to overt congestive heart failure. (c) 2006 European Society of Cardiology. Published by Elsevier B.V. All rights reserved.
Resumo:
The aim of the present study was to evaluate the-effect of interstitial fibrosis alone or associated with hypertrophy. on diastolic myocardial function in renovascular hypertensive rats. Myocardial function was evaluated in isolated papillary muscle from renovascular hypertensive Wistar rats (RHT, n = 14), renovascular hypertensive rats treated with the angiotensin converting enzyme inhibitor (ACEI) ramipril, 20 mg.kg(-1).day(-1) (RHT RAM, n = 14), and age-matched unoperated and untreated Wistar rats (CONT, n = 12). The ACEI treatment for 3 weeks allowed the regression of myocyte mass and the maintenance of interstitial fibrosis. Myocardial passive stiffness was analyzed by the resting tension - length relationship. The myocardial fibrosis was evaluated by measuring myocardial hydroxyproline (Hyp) concentration and by histological studies of the myocardium stained with hematoxylin and eosin or picrosirius red. Left ventricular weight was significantly higher in RHT (0.97 +/- 0.12 g) compared with CONT (0.66 +/- 0.06 g) and RHT RAM (0.69 +/- 0.14 g). The Hyp levels were 2.9 +/- 0.4, 3.4 +/- 0.3, and 3.8 +/- 0.4 mu g/mg of dry tissue for the CONT, RHT, and RHT RAM, respectively. Perivascular and interstitial fibrosis were observed in RHT and RHT RAM groups. There were lymphomononuclear inflammatory exudate and edema around arteries, involving adjacent myocytes in the RHT group. There was an increased passive stiffness in RHT and RHT RAM groups compared with the CONT group. In conclusion, our results indicate that the Impaired diastolic function in the renovascular hypertensive rats is related to interstitial fibrosis rather than to myocardial hypertrophy.
Resumo:
We investigated the influence of myocardial collagen volume fraction (CVF, %) and hydroxyproline concentration (mu g/mg) on rat papillary muscle function. Collagen excess was obtained in 10 rats with unilateral renal ischemia for 5 wk followed by 3-wk treatment with ramipril (20 mg . kg(-1) . day(-1)) (RHTR rats; CVF = 3.83 +/- 0.80, hydroxyproline = 3.79 +/- 0.50). Collagen degradation was induced by double infusion of oxidized glutathione (GSSG rats; CVF 5 2.45 +/- 0.52, hydroxyproline = 2.85 +/- 0.18). Nine untreated rats were used as controls (CFV = 3.04 +/- 0.58, hydroxyproline = 3.21 +/- 0.30). Active stiffness (AS; g . cm(-2) . %L-max(-1)) and myocyte cross-sectional area (MA; mu m(2)) were increased in the GSSG rats compared with controls [AS 5.86 vs. 3.96 (P< 0.05); MA 363 +/- 59 vs. 305 +/- 28 (P< 0.05)]. In GSSG and RHTR groups the passive tension-length curves were shifted downwards, indicating decreased passive stiffness, and upwards, indicating increased passive stiffness, respectively. Decreased collagen content induced by GSSG is related to myocyte hypertrophy, decreased passive stiffness, and increased AS, and increased collagen concentration causes myocardial diastolic dysfunction with no effect on systolic function.
Resumo:
The aging spontaneously hypertensive rat (SHR) is a model in which the transition from chronic stable left ventricular hypertrophy to overt heart failure can be observed. Although the mechanisms for impaired function in hypertrophied and failing cardiac muscle from the SHR have been studied, none accounts fully for the myocardial contractile abnormalities. The cardiac cytoskeleton has been implicated as a possible cause for myocardial dysfunction. If an increase in microtubules contributes to dysfunction, then myocardial microtubule disruption by colchicine should promote an improvement in cardiac performance. We studied the active and passive properties of isolated left ventricular papillary muscles from 18- to 24-month-old SHR with evidence of heart failure (SHR-F, n=6), age-matched SHR without heart failure (SHR-NF, n=6), and age-matched normotensive Wistar-Kyoto rats (WKY, n=5). Mechanical parameters were analyzed before and up to 90 minutes after the addition of colchicine (10(-5), 10(-4), and 10(-3) mol/L). In the baseline state, active tension (AT) developed by papillary muscles from the WKY group was greater than for SHR-NF and SHR-F groups (WKY 5.69+/-1.47 g/mm(2) [mean+/-SD], SHR-NF 3.41+/-1.05, SHR-F 2.87+/-0.26; SHR-NF and SHR-F P<0.05 versus WKY rats). The passive stiffness was greater in SHR-F than in the WKY and SHR-NF groups (central segment exponential stiffness constant, K-cs: SHR-F 70+/-25, SHR-NF 44+/-17, WKY 41+/-13 [mean+/-SD]; SHR-F P<0.05 versus; SHR-NF and WKY rats). AT did not improve after 10, 20, and 30 minutes of exposure to colchicine (10(-5), 10(-4), and 10(-3) mol/L) in any group. In the SHR-F group, AT and passive stiffness did not change after 30 to 90 minutes of colchicine exposure (10(-4) mol/L). In summary, the data in this study fail to demonstrate improvement of intrinsic muscle function in SHR with heart failure after colchicine. Thus, in the SHR there is no evidence that colchicine-induced cardiac microtubular depolymerization affects the active or passive properties of hypertrophied or failing left ventricular myocardium.
Resumo:
A insuficiência cardíaca com fração de ejeção normal (ICFEN) é uma síndrome complexa que vem sendo largamente estudada, desde a última década. É causada por disfunção ventricular diastólica evidenciada por métodos complementares, como estudo hemodinâmico ou ecocardiograma, na presença de fração de ejeção preservada. Acomete preferencialmente indivíduos mais idosos e com comorbidades, como hipertensão arterial sistêmica, insuficiência coronariana e obesidade. Os mecanismos fisiopatológicos são complexos e multifatoriais, envolvendo a rigidez passiva do miocárdio, a geometria ventricular, a força de contenção do pericárdio e a interação entre os ventrículos. Os objetivos principais do tratamento são reduzir a congestão venosa pulmonar, a frequência cardíaca e controlar as comorbidades. Ainda não há evidências fortes de que o uso de medicações específicas, como inibidores de enzima de conversão ou betabloqueadores, interfiram na mortalidade. Os fatores de pior prognóstico incluem a idade avançada, presença de disfunção renal, diabete, classe funcional III e IV (NYHA) e estágio avançado de disfunção diastólica, com padrão restritivo ao enchimento ventricular. Outro aspecto que vem ganhando espaço na literatura é o questionamento do papel da disfunção sistólica nos quadros de ICFEN. Todos esses aspectos são abordados detalhadamente na presente revisão.
Resumo:
The pathogenesis of fibrosis and the functional features of pressure overload myocardial hypertrophy are still controversial. The objectives of the present study were to evaluate the function and morphology of the hypertrophied myocardium in renovascular hypertensive (RHT) rats. Male Wistar rats were sacrificed at week 4 (RHT4) and 8 (RHT8) after unilateral renal ischemia (Goldblatt II hypertension model). Normotensive rats were used as controls. Myocardial function was analyzed in isolated papillary muscle preparations, morphological features were defined by light microscopy, and myocardial hydroxyproline concentration (HOP) was determined by spectrophotometry. Renal artery clipping resulted in elevated systolic arterial pressure (RHT4: 178 ± 19 mmHg and RHT8: 194 ± 24 mmHg, P<0.05 vs control: 123 ± 7 mmHg). Myocardial hypertrophy was observed in both renovascular hypertensive groups. The myocardial HOP concentration was increased in the RHT8 group (control: 2.93 ± 0.38 µg/mg; RHT4: 3.02 ± 0.40 µg/mg; RHT8: 3.44 ± 0.45 µg/mg of dry tissue, P<0.05 vs control and RHT4 groups). The morphological study demonstrated myocyte necrosis, vascular damage and cellular inflammatory response throughout the experimental period. The increased cellularity was more intense in the adventitia of the arterioles. As a consequence of myocyte necrosis, there was an early, local, conjunctive stroma collapse with disarray and thickening of the argyrophilic interstitial fibers, followed by scarring. The functional data showed an increased passive myocardial stiffness in the RHT4 group. We conclude that renovascular hypertension induces myocyte and arteriole necrosis. Reparative fibrosis occurred as a consequence of the inflammatory response to necrosis. The mechanical behavior of the isolated papillary muscle was normal, except for an early increased myocardial passive stiffness
Resumo:
Purpose - To investigate the participation of contractile state and relaxation in cardiac muscle dysfunction during the transition from stable hypertrophy to cardiac decompensation in aging spontaneously hypertensive rats (SHR). Methods - isolated left ventricular papillary muscle function was studied in SHR with heart failure (SHR-F), in age-matched SHR without evidence of heart failure (SHR-NF), and in nonhypertensive controls Wistar-Kyoto rats (WKY). Muscles were analised in isometric and isotonic contractions in Krebs-Henseleit solution with calcium concentration of 1.25mM at 28°C. Results - Papillary muscles from SHR-F and SHR-NF demonstrated decreased active tension development and shortening velocity relative to normotensive WKY (p<0.05). SHR-F and SHR-NF did not differ. Compared with SHR-NF and WKY, muscle passive stiffness was increased in the failing SHR (p<0.05 versus WKY and SHR-NF). This parameter did not differ between SHR-NF and WKY (p> 0.05). Conclusion - These data suggest that the progression from stable hypertrophy to heart failure is associated with changes in the passive stiffness and is not related to depression of myocardial contractile function.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Background: Doxorubicin can cause cardiotoxicity. Matrix metalloproteinases (MMP) are responsible for degrading extracellular matrix components which play a role in ventricular dilation. Increased MMP activity occurs after chronic doxorubicin treatment. In this study we evaluated in vivo and in vitro cardiac function in rats with acute doxorubicin treatment, and examined myocardial MMP and inflammatory activation, and gene expression of proteins involved in myocyte calcium transients. Methods: Wistar rats were injected with doxorubicin (Doxo, 20 mg/kg) or saline (Control). Echocardiogram was performed 48 h after treatment. Myocardial function was assessed in vitro in Langendorff preparation. Results: In left ventricle, doxorubicin impaired fractional shortening (Control 0.59 +/- 0.07; Doxo 0.51 +/- 0.05; p < 0.001), and increased isovolumetric relaxation time (Control 20.3 +/- 4.3; Doxo 24.7 +/- 4.2 ms; p = 0.007) and myocardial passive stiffness. MMP-2 activity, evaluated by zymography, was increased in Doxo (Control 141338 +/- 8924; Doxo 188874 +/- 7652 arbitrary units; p < 0.001). There were no changes in TNF-alpha, INF-gamma, IL-10, and ICAM-1 myocardial levels. Expression of phospholamban, Serca-2a, and ryanodine receptor did not differ between groups. Conclusion: Acute doxorubicin administration induces in vivo left ventricular dysfunction and in vitro increased myocardial passive stiffness in rats. Cardiac dysfunction is related to myocardial MMP-2 activation. Increased inflammatory stimulation or changed expression of the proteins involved in intracellular calcium transients is not involved in acute cardiac dysfunction.
Resumo:
The aging spontaneously hypertensive rat (SHR) is a model in which the transition from chronic stable left ventricular hypertrophy to overt heart failure can be observed. Although the mechanisms for impaired function in hypertrophied and failing cardiac muscle from the SHR have been studied, none accounts fully for the myocardial contractile abnormalities. The cardiac cytoskeleton has been implicated as a possible cause for myocardial dysfunction. If an increase in microtubules contributes to dysfunction, then myocardial microtubule disruption by colchicine should promote an improvement in cardiac performance. We studied the active and passive properties of isolated left ventricular papillary muscles from 18- to 24-month-old SHR with evidence of heart failure (SHR-F, n=6), age-matched SHR without heart failure (SHR-NF, n=6), and age-matched normotensive Wistar-Kyoto rats (WKY, n=5). Mechanical parameters were analyzed before and up to 90 minutes after the addition of colchicine (10(-5), 10(-4), and 10(-3) mol/L). In the baseline state, active tension (AT) developed by papillary muscles from the WKY group was greater than for SHR-NF and SHR-F groups (WKY 5.69+/-1.47 g/mm2 [mean+/-SD], SHR-NF 3.41+/-1.05, SHR-F 2.87+/-0.26; SHR-NF and SHR-F P<0.05 versus WKY rats). The passive stiffness was greater in SHR-F than in the WKY and SHR-NF groups (central segment exponential stiffness constant, Kcs: SHR-F 70+/-25, SHR-NF 44+/-17, WKY 41+/-13 [mean+/-SD]; SHR-F P<0.05 versus SHR-NF and WKY rats). AT did not improve after 10, 20, and 30 minutes of exposure to colchicine (10(-5), 10(-4), and 10(-3) mol/L) in any group. In the SHR-F group, AT and passive stiffness did not change after 30 to 90 minutes of colchicine exposure (10(-4) mol/L). In summary, the data in this study fail to demonstrate improvement of intrinsic muscle function in SHR with heart failure after colchicine. Thus, in the SHR there is no evidence that colchicine-induced cardiac microtubular depolymerization affects the active or passive properties of hypertrophied or failing left ventricular myocardium.
Resumo:
The development of an experimental switching stiffness device fcr shock isolation is presented. The system uses magnetic forces to exert a restoring force, which results in an effective stiffness that is used to isolate a payload. When the magnetic force is turned on and off, a switchable stiffness is obtained. Characterization of the physical properties of the device is presented. They are estimated in terms of the percentage stiffness change and effective damping ratio when switched between two constant stiffness states. Additionally, the setup is used to implement a control strategy to reduce the shock response and minimize residual vibration. The system was found to be very effective for shock isolation. The response is reduced by around 50 percent compared with passive isolation showing good correlation with theoretical predictions, and the effective damping ratio in the system following the shock was increased from about 4.5 percent to 13 percent. (c) 2012 Elsevier Ltd. All rights reserved.
Resumo:
A nonlinear spring element of a vibration isolator should ideally possess high static and low dynamic stiffness. A buckled beam may be a good candidate to fulfil this requirement provided its internal resonance frequencies are high enough to achieve a wide frequency range of isolation. If a straight beam is used, there is a singularity in the force-displacement characteristic. To smooth this characteristic and eliminate the singularity at the buckling point, beams with initial constant curvature along their length are investigated here as an alternative to the buckled straight beam. Their force displacement characteristics are compared with different initial curvature and with a straight buckled beam. The minimum achievable dynamic stiffness with its corresponding static stiffness is compared for different initial curvatures. A case study is considered where the beams are optimized to isolate a one kilogram mass and to achieve a natural frequency of 1 Hz, considering small amplitudes of vibration. Resonance frequencies of the optimized beams for different curvature are presented. It is shown that an order of magnitude reduction in stiffness compared with a linear spring is achievable, while the internal resonance frequencies of the curved beam are high enough to achieve an acceptable frequency range of isolation.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)